4.5. Prediction of impact loads


The forces that are generated during the impact process are of great interest to the structural engineer but they are hard to measure and even harder to predict. Virostek et al. [38] reviewed the successful experimental methods that have been employed in order to obtain the force – time history of the impact process and describe a new technique for measuring forces generated during oblique impact. Predicting the forces produced during impact has continually been of interest to impact engineers. Robins [72] in his treatise "The New Principle of Gunnery" of 1742, most famous for its description of the Ballistic Pendulum, carried out work on the impact of wood and supposed the resisting force of the target to be constant throughout the process. Poncelet [126] proposed a further term to be included, proportional to the square of the velocity, representing the force required to overcome the cohesion of the target material [86]. A third term has subsequently been included, proportional to the projectile velocity, representing the frictional resistance, giving rise to the semi-empirical formula
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Experimentally obtained force – time histories have allowed empirical formulae to be fitted to the experimental data. For example, some authors have assumed a triangular force pulse whereas others have adopted an exponentially decaying one, of the form
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Virostek et al. [38] proposed a force – time history for a hemispherically-tipped projectile (for any angle of incidence) given by:
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where A(t) is the projected area on the target in the direction of travel at time t and 
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 is the coefficient of drag.


Levy and Goldsmith [127] in the first of a pair of papers [127,16] derived an expression for the force – time history for normal impact of thin plates by hemispherically-ended projectiles that is totally predictive below the ballistic limit, but requires measured information above the ballistic limit. The impact process was treated in terms of lumped-parameters which greatly simplifies the problem, but does not yield any "internal" system variables such as target strains and stresses. It does, however, give a simple and effective method of predicting the forces generated during impact and corresponding target displacement, as well as predicting well documented phenomena such as the initial drop in peak force at perforation and the subsequent simultaneous motion of the plug and target plate.


The impact process for non-perforating projectile impact was represented by its mechanical lumped-parameter analogue as shown in Fig. 50(a). The force applied to the projectile was equated to the force required to accelerate the plate material plus the force required to overcome frictional resistance. The analysis only considered the motion of the plate in the initial travel direction of the projectile and the mass of plate that is accelerated by the projectile at any one time was regarded as an equivalent rigid mass, 
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 which is given a deflection 
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. The frictional resistance was considered as a dash-pot with a damping coefficient, B. The resulting equation of motion
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was solved for an assumed deflection profile (similar to that proposed in [15]),
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An expression for the final central deflection, 
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 was derived
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for a value of v = 0.3, and the following force – time relationship obtained,
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where 
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 Here a is the constant from Eqn (57) which is found from experimental evidence. (For example, tests carried out by the present authors indicate that for a 1 mm thick, 250 mm diameter steel plate struck by a 12.7 mm diameter hemispherically-tipped projectile, a = 0.03 mm
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.) The peak force was expressed in terms of the initial momentum as
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This peak force is generated immediately upon impact. It was assumed in the derivation of Eqn (59) that the loss of projectile velocity in the momentum transfer to the plate was small in comparison with the initial central plate velocity. This analysis does not provide a prediction of the failure load, although a similar approach was used for perforating projectile impact. In this case the corresponding mechanical lumped parameter system is as shown in Fig. 50(b). Here, 
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 is the plug mass and 
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 is the equivalent mass of the unperforated plate minus the mass of the plug. The equations of motion are:
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and
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where 
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 and 
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 are the displacements of the target and the plug respectively. These equations of motion were solved in [127] as in the non-perforating case, although the initial conditions are not so straightforward. They must be chosen from:


(i) identical initial velocities of plug and projectile on impact,


(ii) identical initial velocities of plug and plate on impact,


(iii) identical initial accelerations of plug and plate on impact.

The first condition is an obvious candidate for inclusion but which of the other two is to be used with it is not so clear. In [127] the first two conditions, (i) and (ii), were chosen, and an expression for the force – time relationship obtained. In contrast to the non-perforation expression, the equation for the force – time response for the perforating case contains two parameters that need to be obtained experimentally or assumed from experience, namely the cap height, h* and the plug mass, 
[image: image21.wmf]m
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. In the companion paper Levy and Goldsmith [16] reported over 200 tests on mild steel and aluminium plates. Amongst other things (see Section 2. 1) they investigated the variation of h* and 
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 with initial projectile momentum for a 1.27 mm thick aluminium 2024-0 plate, struck by two types of 12.7mm diameter round nosed projectiles. The results indicated that there is no simple relationship to describe these unknowns in terms of the known parameters and further work is needed to quantify the problem.


The experimental programmes described in [16] and [127] indicate that, despite its simplicity, the analysis predicts the force – time response of aluminium plates under non-perforating impact conditions extremely accurately (Fig. 51). The fact that the peak-force is generated instantaneously with no rise time in the theoretical model is due to the initial conditions imposed. The correlation between theory and experiment for the non-perforating impact of mild steel plates was not so close, with the theory consistently underestimating the peak force. The authors attribute this discrepancy to the effects of strain-rate and strain hardening that are significant for mild steel and that are not accounted for in the analysis.


As mentioned earlier, the results of the analysis on perforating impact tests depend upon the initial conditions chosen. A comparison between the results of the analysis using both possible sets of initial condition along with the experimental force – time curve for the 1.27 mm thick aluminium plate can be seen in Fig. 52. The actual peak force lies approximately half-way between the two theoretical predictions, implying that the actual initial conditions lie somewhere between the two sets chosen. Levy and Goldsmith [127] also pointed out that using the initial conditions (i) and (ii) for the perforating impact led to a relative velocity, 
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 between the plug and the plate that is linear with time, whereas conditions (i) and (iii) lead to a relative velocity that is quadratic in time. Thus, whatever conditions are used, for the short time intervals involved (typically 10
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 s) the relative velocity 
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 will be approximately constant. This, when introduced into the equation of motion, indicates a maximum force given by
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and hence the ratio of the peak forces for the perforation and non-perforation 

run is
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Thus, this relatively simple analysis predicts the sudden drop in the peak force that occurs upon the initiation of perforation. The analysis also highlights the linear dependence of peak force on initial projectile momentum and the linear dependence of deflection on the square root of the projectile energy; two well-known relationships (Figs 53 and 54).

4.6. Multi-stage penetration models


The previous sections have been concerned with the various failure mechanisms and target responses that occur under projectile impact conditions. These have been dealt with individually and serve to highlight the important features of, and the conditions that lead to, each particular process. However, quite often the projectile – target system is not one in which a single process dominates over the others but rather one in which a combination of two or more processes occur. This is particularly true of intermediate to thick targets where the dominant perforation processes may change as the projectile travels through the target thickness [100, 101].


Awerbuch [128] divided the penetration of flat target plates by 5.6 mm diameter lead bullets into two stages. In the first stage only inertial and compressive forces are assumed to act and the effective mass of the projectile increases as it accelerates target material before it. The second stage commences when a plug of target material is formed; the inertial and compressive forces disappear and are replaced by a shearing force. A force balance is applied to both stages, of the form

                                                    
[image: image28.wmf](

)

(

)

d

m

V

dt

F

F

F

e

i

c

s

=

-

+

+

.

                        (64)

Here, 
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 is the effective mass of the projectile and 
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 are the inertial, compressive and shearing forces, respectively. When the appropriate expression for the forces are inserted, Eqn (64) can be integrated to give an expression for the final projectile velocity.


Goldsmith and Finnegan [8] improved upon the analysis by replacing the constant shear force for the second stage of penetration that was assumed in [128] with one that decreases as the contact surface area between the plug and the undeformed plate decreases. Another major improvement to the theoretical model was presented by Awerbuch and Bodner [129] in which a third stage of penetration was introduced into the analysis and an improved shearing model used. During this stage, which was introduced between stages 1 and 2 of the previous model, it was proposed that there is still an inertial force present as well as a compressive force that decreases with penetration in a parabolic manner. There is also a shearing force present that acts between the accelerated target mass and the stationary remainder of the plate. The equations of motion were solved for the three stages of penetration to give the force – time history for the projectile. A typical example is shown in Fig. 55 which also shows the velocity – time and displacement – time relationships. Significantly, whereas the previous analysis [8] predicted a very small or non-existent force at the end of the penetration process this analysis predicts a force only marginally lower than the peak force. This large value of the final force exerted on the projectile is consistent with the observed initial decrease in the velocity drop as the projectile velocity is increased to just above the ballistic limit (Fig. 2).


In a companion paper [130] Awerbuch and Bodner describe a series of experiments that was run in order to validate the theory. A number of assumptions that were made in the analysis were seen to be justified and the post-perforation velocities and duration times were found to be in good agreement with the theoretical values.


Following up their experimental paper [9], Shadbolt et al. [131] carried out an analytical study of plate penetration processes. They improved upon Awerbuch and Bodner's analysis [129] by including a term for the energy absorbed due to plate deformation away from the impact area – a term neglected in the previous analysis. This plastic work is in the form of membrane stretching (as in the Beynet and Plunkett model [11]) for plates less than 3 mm thick and in the form of plastic bending (as in the Calder et al. model [114]) for plates over 3 mm thick. This approach proved to be unsuccessful with the modified perforation velocity being less than the original predicted velocity. It should be noted that the modified analysis in [131] includes modifications to the plugging of Awerbuch and Bodner and thus the results do not imply that inclusion of global effects results in a reduction in critical perforation velocity (see [132]). It appears therefore that the good correlation found between the prediction for the perforation velocity from the Awerbuch and Bodner model [129] and experimentally derived for thin plates (h
[image: image31.wmf]0

 < 5 mm) is fortuitous. It is probable that the underestimation of the result caused by neglect of global plate response is disguised by errors introduced into the analysis through assumptions made that, although valid for high velocity impact situations, are not suitable for impact velocities near the ballistic limit. This is discussed more fully in [131].


An alternative approach was proposed by Shadbolt et al. [131] in which the solution due to Reissner [133] for the equations of equilibrium for the large deflection of flat plates under impulsive loading was adapted to analyse the problem. The five forces and moments that appear in the equilibrium equations lead to a yield criterion that forms a surface in five-dimensional hyperspace. However, by using a limited interaction yield criterion based on a Tresca material in which there is no interaction between the membrane forces and moments, and shear is considered only with the moments, the yield criterion can be simplified to a manageable form. This yield criterion was used along with a constitutive relationship that allowed strain-hardening and strain-rate effects to be incorporated in the analysis of the problem. A strain-dependent failure criterion was used to predict perforation. The equilibrium equations were solved by inserting the initial boundary conditions and using a finite-difference approximation producing non-linear equations with around 50 radial mesh points and 75 time steps. The solution method marches forward with time and determines the hinge position and projectile deflections at each time step. At each step the shear flow criterion is examined and if shear is present the amount of shear slip is found. The analysis was found to give a good prediction of the critical failure velocity for the plates tested in the earlier paper [9], although understandably (due to the approximations and the yield and boundary conditions used) the theoretical plate profiles are poor estimates of the experimentally obtained ones. The prediction of overall central deflection was fair.


This analysis, as in the earlier ones, [128,129], relies on certain empirical data, most importantly the width of the shear band below the projectile – target interface. Further work needs to be done to investigate the behaviour and response of this shear band to changes in the projectile and target parameters. The characteristics of the shear band are likely to be dependent on a number of parameters, e.g. material properties, strain hardening characteristics, impact velocity, temperature etc. However once a suitable characteristic value for this width is found, the analysis of [131] is seen to predict accurately the perforation velocity of mild steel, stainless steel and aluminium alloy plates of various thicknesses (Fig. 56).


Woodward [134] adapted the solution of the problem of plastic shear deformation of infinite beams under impact loading, given by Symonds [135] to that of a thin plate (Fig. 57). In this case the penetration process is divided into two stages: (i) plug shearing and (ii) membrane stretching. In stage (i) the plug and projectile are assumed to take up an instantaneous velocity 
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 upon impact with the remainder of the plate rotating about a hinge, the position of which can be determined at each time step. Equating the impulse of the shear force 2Q
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, to the change in angular momentum on either side of the plug – plate interface yielded an equation of motion which was solved at each time step to give the radial position of the hinge. The initial position of the hinge was found to be at 
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 is the radius of the projectile) and this was seen to increase with time. Stage (i) finishes when the contact length between the plate and the plug becomes zero (i.e. failure by plugging) or when the increasing peripheral plate velocity, 
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 attains the value of the plug velocity, 
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 and the sliding ceases, indicating the onset of stage (ii). During stage (ii) the plate stretches as a membrane as well as bending about the plastic hinge. The equations of conservation of linear and angular momentum are solved for each time step.


Woodward [134] used a failure criterion based on strain to failure to predict the perforation velocity. The plate was regarded as a tapered tensile sample with a cross-sectional area of 
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 is the radius of the hinge at failure. If the plate is regarded as being rigid, linear work-hardening with a stress – strain characteristic of the form
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then the mean strain in the specimen is
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where 
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 is the strain at the inner radius, 
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. The plate is regarded as having failed once the mean strain reaches the strain to failure, 
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This method involved a number of simplifications: the neglect of strain rate effects and tangential curvature in the dished region; the idealization of a travelling hinge about which rigid body rotation occurs; and the use of a simplified yield criterion. These indicate that this analysis is not intended as a detailed prediction of events but more as a qualitative and quantitative guide to the resistance of thin plates. A comparison with the experimental results of Corran et al. [9] and Neilson [81] indicated that the model predicts the trends well, although for impact tests on steel targets it tended to underestimate the perforation velocity. This is probably due to the neglect of strain-rate and strain-hardening effects.


Crouch et al. [17] carried out an experimental investigation into thin plate perforation to test the validity of the analysis in [134]. Small scale impact tests were carried out on aluminium alloy plates 1.6 – 6.5 mm thick with a span of 37.5 mm (6 < 
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 < 23). A non-deformable flat-faced cylindrical projectile, 25 g in weight and 12.7 mm in diameter (2 < 
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 < 8) was used to load the plates. It was seen that the Woodward model [134] predicted the ballistic limit of the plates reasonably well for all plates except the thickest (
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 = 6.5 mm) which had a ballistic limit lower than that predicted by the model. This lower than expected ballistic limit for plates with relatively high 
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 ratios, attributed to the effects of shear by Crouch et al. [17], has been observed by a number of other investigators (see, for example, [82,84]). Quasi-static indentation tests were also carried out by Crouch et al. [17] and the perforation energies compared with those measured under impact loading conditions. The energy required to perforate the plate under quasi-static loading was seen to be highly dependent on span with the Woodward model [134] predicting the quasi-static perforation energy best for plates with the longest span (186 mm). This is because larger spans of target are required to absorb the same amount of energy through plate dishing under quasi-static loading than under impact loading [17].


Some large scale perforating impact tests were also carried out in [17] in which 3 kg projectiles of diameter 62.5 mm were fired at 400 mm square panels, clamped at a diameter of 312 mm. The same target thicknesses used in the small scale tests were used. The Woodward model [134] did not predict the residual projectile velocity or the final central displacement well, with it over-predicting the former and under predicting the latter. The discrepancy was attributed to projectile yawing, which was noted as being present in all but one of the tests. The test in which yawing did not occur was seen to give the best correlation between the model and experiment. A discussion of the effects of projectile yawing can be seen in Section 2.3.


Quanlin [136] presented a theoretical solution for the dynamic response of an infinitely large plate made of a rigid, perfectly-plastic material under normal impact by a rigid flat-faced cylinder. The penetration process is divided into two stages similar to those described by Woodward [134]. In this analysis though the circumferential hinge about which the plate rotates was assumed to remain stationary during the first stage. The analysis of Quanlin [136] includes the effects of rotary inertia of the target but neglects membrane action. The results were plotted as ballistic limit vs resistance to plugging, ballistic limit vs radius of gyration of plate (rotary inertia) and ballistic limit vs relative target thickness. Situations where rotary inertia cannot be neglected were highlighted, with this effect being shown to decrease the ballistic limit by approximately 7% for a plate with uniform mass distribution. This analysis was for a plate of infinite extent and is only valid for small deflections. Also it uses assumptions only applicable for thin plates yet neglects membrane effects. These factors suggest that the results obtained need to be verified experimentally before they can be applied with confidence to actual impact situations.


Liss et al. [137] split the penetration process into five different stages and employed plastic wave theory to analyse each stage. The first four stages, which are shown in Fig. 58, combine with post-perforation deformation to make up the five stages. In Fig. 58 the subscript 1 refers to the projectile, 2 to the deformed plug portion, 3 to the outer target zone and 4 to the undeformed plug portion. U represents the shock wave speed relative to the undeformed material and the thick black line denotes the plastic shock wave front. The projectile is regarded as being a rigid flat-faced cylinder and the target as being made of a rigid, work-hardening material, incompressible in the plastic domain which can be represented by an isothermal strain-rate dependent constitutive relation. Account is taken of the constraining effect of the surrounding plate material [70]. In the analysis an equation of motion is written for each stage of penetration giving, for each stage, an expression for the force acting on the projectile and the deceleration of the projectile in terms of 
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. The plate response outside the impact zone is modelled by considering the action of a travelling plastic hinge at radius R(t) which is formed as a result of the shear action at the projectile periphery. All five stages of the process can be seen in Fig. 59.


The equations of motion for the five stages were solved numerically in [137] for aluminium plates of thicknesses ranging between 3.2 and 12.75 mm and ratios of initial velocity to ballistic limit (
[image: image52.wmf]V
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) between 0.8 and 10. A set of typical force histories for the impact of a 6.4 mm aluminium plate for various projectile velocities is shown in Fig. 60 with the corresponding velocity histories, shown in Fig. 61. The force histories are similar in shape to those recorded experimentally (see, for example, [16]) with the sudden drop occurring after 7 
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 for all impact velocities. This drop is due to the arrest of the plastic shock wave and is followed by peripheral shear-controlled behaviour. When compared with experimental results and previously proposed theories [32,138] this model is seen to give excellent predictions of residual velocities, with the improvement on the other theories being greatest when the initial velocity is only marginally higher than the ballistic limit (Fig. 62). This analysis does not represent the total target deformation as it does not include the effects of target plate bending. In a companion paper Liss and Goldsmith [139] ran a series of tests in order to test the validity of the proposed model. These tests involved heavily clamped aluminium plates with thicknesses in the range used in the analytical model (3.2 – 12.75 mm) being struck by non-deformable flat-faced cylinders with a diameter of 12.5 mm and a nominal mass of 40 g, travelling between 60 and 600 m/s.


Figure 63 shows a comparison between the predicted residual projectile momentum with that obtained experimentally and shows the effect of including shear action in the model. In general, the inclusion of shear effects is only significant for thin plates struck at velocities near their ballistic limit. For the thicker plates and thin plates struck at velocities appreciably greater than their ballistic limit the analysis of [137] is seen to predict accurately the response of the plate. For thin plates struck at velocities near their ballistic limit, the analysis, even with the inclusion of shear effects, tends to overpredict the final projectile momentum indicating that under these conditions plate bending is a significant factor. For intermediately thick plates the inclusion of shear effects only is sufficient to represent the global plate response.


During the experiments carried out in [139] is was noted that the plugs formed in the perforation runs were slightly tapered with the base diameter being largest and approximately equal to the projectile diameter. This supports an important assumption made in the analysis of [137] that a continuous shear force is present during the penetration process up until the projectile front reaches the rear face of the target. In the appendix of [139] Liss and Goldsmith extended the analysis of [137] to include the effects of projectile deformation, using the model shown in Fig. 64.


Plastic wave theory was also utilized by Yuan Wenxue et al. [140] to analyse plate impact by deformable projectiles. The projectile, which was assumed to be made of a rigid, linearly work-hardening material, was modelled in a manner similar to that adopted by Liss and Goldsmith [139], shown in Fig. 64. However, the analysis of [140] neglects any motion of the plate beyond the impact zone and is therefore only applicable for thick plates, or thin plates struck by projectiles travelling at velocities well in excess of their ballistic limit. Residual velocity and plug dimensions were predicted reasonably well by this analysis once these conditions were met.


Jenq et al. [141] followed up the analysis of Liss et al. [137] by changing the global response of the plate from one of shearing to one of bending. The five stages of penetration were as described in [137] but here the mechanism of global target deformation was bending, with membrane and transverse shear effects being ignored. The global response was analysed using classical plate bending theory in conjunction with a rigid, perfectly-plastic constitutive relationship and a Tresca yield condition. The target was divided into four regions which are separated by three concentric circles with their centres at r = 0. The inner circle is at the radius of the projectile and the outer annulus is at that radius where the shear force is zero; i.e. the extent of plastic bending. (Elastic effects are ignored.) The third annulus lies between the inner and outer circles and denotes the radius at which the plate material changes faces on the Tresca yield hexagon. The dynamic equilibrium equations were solved with the aid of the curvature – displacement relations, the flow rule, appropriate boundary conditions and constitutive relationships for each region. The resulting equations were put into matrix form and solved iteratively.


Tests were carried out by Jenq et al. [141] to check the accuracy of their analysis. In these tests flat-faced, hard-steel, cylindrical projectiles of diameter 12.7 mm and mass 35.5 g were fired against heat-treated aluminium alloy plates of diameter 140 mm and thickness 3.18, 4.76 and 6.35 mm. It was shown that for thin plates (3.18 mm thick) bending was the dominant mode of deformation, with shear only being important near the impact zone (typically 
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). As the plate thickness increased, the effects of shear became more significant (Fig. 65). Figure 66 shows some comparisons between the analytical and test results for final target deformation of the bending model for 6.35 mm and 3.18 mm thick target plates. It can be seen that the correspondence is fairly close, especially for the thinner plates. The discrepancy that does exist was explained by: (i) the assumption of an infinite plate used in the analysis; (ii) the adoption of the dynamic yield stress for the whole of the plate; and (iii) the neglect of changes in material properties during the penetration process. Jenq et al. [141] also compared the results of two computer codes, AUTODYN and DYNA2D with their experimental results and the analytical model. The results are discussed in Section 5 below.


Shoukry et al. [142] developed an analytical model based on those by Liss et al. [137] and Jenq et al. [141] to predict the response of circular steel plates to projectile impact from a non-deformable projectile. The penetration model developed by Liss et al. [137] was used to describe target behaviour in the impact zone and a dynamic plastic bending model, including the effect of transverse shear, was used to describe global target response. A rate-independent, rigid, perfectly-plastic target material was assumed in conjunction with a Tresca yield criterion which includes transverse shear. The model was used to predict deformed target profile, projectile and target velocities during the penetration process and residual projectile velocities following perforation. The analytical results were compared with experimental data obtained from tests carried out and reasonable correlation was found. The analysis tended to under-predict target deflection, as did Jenq et al.'s analysis [141], and this was attributed to similar assumptions made in the analysis.

5. NUMERICAL METHODS


This survey is not primarily concerned with the use of numerical methods to predict the response of an impact loaded structure. However, in the interest of completeness, the more important works and codes that address themselves to finite thickness plate penetration and perforation need to be mentioned. Examples of using numerical techniques to analyse the general problem of penetration and perforation can be found in the works of Backman and Goldsmith [2], Jonas and Zukas [143], Wilkins [144], Zukas [145,146], Rouvray et al. [147] and Schever et al. [148]. These works also include extensive bibliographies on the subject. Anderson and Bodner [149] discussed the state of analytical and numerical modelling of the impact process. They noted that major advances in numerical techniques have been made allowing the target response to be predicted from first principles without the aid of empiricism. However, the modelling of failure mechanisms is still limited to a single failure mode. The primary reason for this limitation was stated in [147] as being due to the fact that modelling fracture computationally requires a model for material failure as well as a method for representing failure and failure propagation in the calculation grid. Jonas and Zukas [143] concluded that the codes available at that time were only suitable for high velocity impact or for impact which did not involve failure of the target material. The main problem with relatively low velocity impacts is that the codes lack sophisticated constitutive equations to characterize the material behaviour (a discussion on the use of one- and two-dimensional constitutive models to characterize dynamic plastic material behaviour can be found in [67]). Also dynamic properties of the projectile and/or target material are often not known and the failure criteria are extremely hard to model accurately. Even though the cost in real terms of computing time has fallen dramatically over recent years, the available finite element computer codes for predicting large plastic strains and material failure are still prohibitively costly for most applications.


Neilson [150] compared experimental results from low velocity impact tests on mild steel plates with the predictions of the finite element computer code EURDYN-02. It was shown that linear elastic theory [151] can be used to derive the equivalent radii of circular plates which correspond to square panels, thus allowing the impact calculations to be reduced from three-dimensional to axisymmetric geometries for centrally loaded square panels. The computer code was seen to predict accurately the maximum transient deflections but to overpredict terminal deflection. When the strength of the material used in the code was increased by 50% to accommodate dynamic effects then the peak deflection was underestimated by approximately 15% but a better prediction of the final deflection was obtained (Fig.67). No attempt was made to predict failure. The predictions of the ASTARTE computer programme were also compared with experimental data. In this case the enhancement of the yield stress of the plate material due to rate effects was represented a little less haphazardly, namely by the relation
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where 

 is the dynamic yield stress, 

 is the static yield stress, 

 is the strain rate and D and p are constants (values of D = 36.9 s

 and p = 3.26 were used for mild steel). As in the EURDYN-02 case, the programme was able to predict the permanent central deflection of the panels to within 10% but underestimated the peak deflection by approximately 20%. The investigation was extended to include higher impact velocities, up to 100 m/s, by Neilson [152]. Failure was not promoted, even at the highest velocity, although the residual energy of the bullet was sufficiently small to indicate that the ballistic limit was nearly reached at the higher velocities. The EURDYN-02 code was shown to give good agreement with experimental results at these speeds.


The DYNA-2D Lagrangian finite element code was used to simulate the impact loading of aluminium plates in [141]. Two runs were made, one with the static stress – strain data as a measure of the material strength and one with the dynamic stress – strain data. Once again it was found that the results are sensitive to the material characteristics chosen. When the static data were used the maximum deflection was overestimated by approximately 20% and when the dynamic data were used it was underestimated by 10%. A Lagrangian finite difference code AUTODYN was also compared with the results of the experimental programme described in [141]. Once again, although the correspondence was fair, the result of using stress – strain data led to consistent overestimation of the peak deflection. The predicted plate profiles were seen to be in good agreement with those obtained experimentally. The application of DYNA-2D and AUTODYN to the problem of predicting the plate response to projectile impact was also discussed by Jenq and Goldsmith in [148] (pp. 223 – 233).


Neilson [152] applied the three-dimensional codes EURDYN-03 and DYNA-3D to the impact loading of cylindrical shells (pipes). EURDYN-03 gave a reasonable prediction of the increase in central deflection with time, although the overall agreement between calculated and experimental strains was not so good. DYNA-3D gave a better prediction of the strain histories as well as good predictions of pipe deflection (Figs 68 and 69). DYNA-3D was also applied to the impulsive point loading of thin-walled aluminium cylindrical shells by Schwer et al. [153] with considerable success. As well as predicting strain histories, a failure criterion based on a bi-axial straining limit was used to predict the impulse intensity required for failure.


Bamman et al. [154] discuss the development of constitutive models which use internal state variables for predicting failure in ductile materials. They point out that plastic strain is a poor choice for a state variable, both for prediction of deviatoric plasticity and strain to failure. A model was developed which describes deviatoric plasticity independently of void growth and then couples the effect of voids on the plastic flow and elastic moduli. This model was implemented using the DYNA-2D finite element code for the prediction of perforation of aluminium plates under impact loading from hardened steel rods. The results were compared with experimental results obtained from tests on 57.2 mm diameter, 3.2 mm thick, simply-supported 6061-T6 aluminium plates. Excellent agreement was obtained from the two sets of results with the model predicting an impact velocity of between 84 and 89 m/s for first failure as opposed to an experimentally obtained value of between 79 and 84 m/s (Fig. 70).
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