4. EXAMPLES OF SOLVING BOUNDARY VALUE PROBLEMS OF IMPACT AND FRACTURE 


The technique for calculating the stress-strain state and fracture proposed in the previous chapter is illustrated here by simple problems of impact, deformation and fracture.


Section 4.1 presents a solution to the problem of a thin elastic bar impinging on a rigid target. A mathematical simulation of the stress and strain states of the bar is made, as well as a mathematical simulation of micro-damage accumulation and bar fragmentation resulting from impact. A similar problem is considered in Section 4.2, but this time for a plastic bar. Exact solutions on the stress-strain state of the bars are known for these problems. A good agreement between the approximate solutions and the exact ones testifies to the acceptability of the approximate method. The mathematical simulation of bar impact on a target (within elastic deformations only) has revealed the periodicity of the function of damage accumulated along the bar. This phenomenon may be referred to as microdamage interference.
Section 4.3 deals with a classical problem of metal forming – hammer forging of a parallelepiped. This problem can also be treated as a model of an impact damping device. Sections 4.4 to 4.6 deal with the experimentally discovered phenomenon of superdeep penetration and a mathematical model of this phenomenon. The agreement between the simulation results and experimental ones bears witness to the acceptable quality and practical applicability of the new theory discussed in Part II.


The exemplary problems are solved in enough detail for the reader to master the technique, to learn how to solve problems of the kind and to understand the procedures offered by the software if he happens to come across it.

4.1. Impact of a rigid target by an elastic bar and bar fracture

Problem statement. Suppose that a thin bar of length 
[image: image1.wmf]L

 moves at a velocity 

 and, at 

, impinges on a rigid target, see Fig.18. One needs to determine the stress and strain states of the bar and its damage for any 

 and to describe fragmentation. Assume that all the presumptions describing longitudinal bar vibrations by a one-dimensional wave equation, namely, saying that the material points of the bar move only along its axis and that the strains are small. It is also assumed that the mass forces, except inertial ones, are zero. For our problem, at an arbitrary fixed instant (before the instant of fragmentation, tf), the variational equation has the form 
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Here 
[image: image3.wmf]J

 is the functional of the principle; 

 are stress tensor and strain rate tensor components; 

 are velocity vector and acceleration vector components (summation is made over the rcurring indices, the quantities to be varied being marked off by primes); 

 is mass density.

Let the constitutive equations be represented by Hooke’s law, which, for the instance of uniaxial deformation, reduces to one equation, namely,
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where 
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e

 are strain tensor components and 

 is Young’s modulus.


Solution made with the application of the variational-difference method. Solve the variational problem (166) by the difference method. Select the one-dimensional virtual fields of velocities as
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The other velocity vector components are zero under the conditions of the problem. Here, 

 and 

are the co-ordinates of the points of the uniform discretisation of the segment 

; 
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 are the required values of velocity at the discretisation nodes. At each instant, on the bar deformation interval [
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 are the parameters to be varied in the the variational problem.

        Taking into account that


[image: image10.wmf],

,

1

'

1

'

'

i

i

i

i

xx

x

x

x

h

v

v

£

£

-

=

x

-

-





(169)

the functional in Eq. (166) acquires the form of the function 
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        According to the method, the necessary functional extremum conditions
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will have the following relationships substituted in them (after differentiation):
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as well as the value 
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corresponding to the constitutive equations (167). The substitution results in the ordinary differential system 
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enabling one to find 
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 are constant matrixes.

As an example, the set of equations (174) was solved numerically (the Runge-Kutta method of the third order) with the initial conditions 
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The values of displacements at the nodes as functions of time were found, as well as the time of rebound, 

=0.00004s (from the condition 

), which is required to formulate a new boundary value problem, namely, bar motion after the rebound if no fracture occurs before it. The problem of post-rebound motion was solved similarly. Note that the following boundary conditions are taken into account in the solution: 

 in the stage of bar–target interaction and 

 after the rebound. The values of stresses, node displacements and velocities as they are at the instant of rebound are taken as initial conditions for the second stage. The solution result for both stages is shown in Fig.19. The displacements and velocities for n=10 agree well with the exact solutions to the wave equation describing the longitudinal vibration of an elastic bar.

Solution with the use of Fourier Series. We now solve the same variational problem (166) using a different interpolation of the required functions, namely, we find velocities 
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where 
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By applying the method as above, the following uniform set of linear second-order ordinary differential equations can be obtained in order to find the unknown coefficients:
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which results in
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where 
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 and the coefficients 

 are found from the initial conditions
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as follows:
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As the function 

, a continuous function somehow approximating the discontinuous initial conditions of the impact problem, namely,
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The solution of Eq. (177) coincides with the sum of the first n members of the series expressing the exact solution to the wave equation. Experimental tests have yielded good results.

The problem of post-rebound bar motion was solved similarly. The virtual fields were assumed to be
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where 
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 The values of displacement and velocity as they are at the instant of rebound are taken as initial conditions for the second stage. Fig. 20 shows the values of stresses at the nodes calculated with the use of the series for 
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The solution in the form of series segments gives a more exact result than the variational-difference one, however, in the general case, it is not always possible to select the co-ordinate functions. The above-described problem solutions were necessary for testing the method, and they were based on the assumption that the bar does not fracture (i.e., that there is no macro-fragmentation). Now turn to the prediction of micro-damage and macro-fragmentation.

Bar damage prediction. Using the solutions to the problem on bar impact on a rigid target, we predict bar micro-damage caused by impact and subsequent vibration. We establish the instant of time 

 and the co-ordinate 

 of the first macro-rupture, internal friction being neglected. 

           According to Section 2.6, damage 

 was predicted for a material particle as follows. Temporary segments of monotonic deformation are singled out for each bar particle particle as it moves. Strain rate 

 retains its sign within the segment. The instants of the change of the sign of this strain rate component (transition through zero) are denoted by 

. Then, on the n-th segment 



[image: image42.wmf](

)

,

1

å

=

a

y

=

y

n

i

i

i

t



and   
[image: image43.wmf](

)

(

)

.

0

),

(

]

),

(

),

(

[

1

2

1

=

y

E

E

=

y

-

n

n

n

t

t

t

t

k

t

k

C

dt

d



(182)

Recall that here 
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 is strain rate intensity, 
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 is tangential stress intensity, and 

  are principal normal stresses. It is assumed for estimation that 
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The functions 

 and 

 are taken from [7] as
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with the following material constants: 

 and 

. In the models under study, the value of damage reaches one at several points simultaneously, more exactly, on some segments where macro-fracture will occur. Figure 21 shows damage distribution in the bar at the instant of the first macro-rupture 

 at an impact velocity of 250m/s. Note that, in all the model experiments, the distribution of damage 
[image: image52.wmf]y

 along the bar is seen to be an oscillating function. This phenomenon was given the name damage interference. Figs. 22 and 23 show the instant of fracture and the rupture point co-ordinates as dependent on impact velocity 

. Experiments have shown that bar fracture sometimes occurs after the rebound. During the period of interaction between the bar and the target and after the rebound caused by the wave process inside the bar, damage accumulation takes place in the projectile. It may result in macro-rupture after the rebound. Fig. 22 shows the instant of this rupture (time was kept from the beginning of contact between the bar and the target), the place of the rupture being shown in Fig. 23 (reckoning from the front end of the bar). Both quantities (

 and 

) depend on bar impact velocity 

.

The subsequent instants and points of rupture can be predicted similarly. Fig. 24 shows the motion of bar fragments after the first rupture. As the bar rupture occurs under tensile stresses at the point of rupture, the fragments move on at different velocities. 

Post-impact fragmentation caused by material fatigue in vibrations is known from experiments. For example, this mechanism seems to be responsible for the failure of Rupert’s glass drops described in [66].

Of course, the example considered in this section is very simple, and it should be completed with a description of the dissipation of mechanical energy into heat energy and a description of vibration damping caused by “internal friction” and external resistance.

4.2. Impact of a rigid target by a plastic bar
Suppose that the bar material is incompressible and that it possesses rigid-plastic properties, namely, the constitutive equations are written as
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The boundary value  problem of the theory of plasticity representing the problem stated is equivalent to the variational equation
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for the virtual velocity field selected, 
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 is not varied here, and it corresponds to the actual state.
We select the virtual field in difference form, as in Eq. (168). Although the strain rate tensor component 
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The substitution of Eq. (172) and
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into the necessary extremum conditions (171) gives the following set of equations to find the functions 

:
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The vectorial equation (188) was solved with the followong values of the parameters: 
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The test examples discussed in Sections 4.1 and 4.2 have yielded good results in applying the approximate solution method proposed in Chapter 3 to the prediction of the stress-strain state of elastic and plastic thin bars. The prediction of the microfracture and fragmentation of a body as it fractures has revealed various phenomena (damage interference, fragment separation), some of them being observed experimentally. The method can be recommended for practical application.

4.3. Parallelepiped forging

Consider parallelepiped forging between flat dies – a classical problem of plastic metal forming, which was considered in [67 – 69] in a similar statement. We make an illustrative solution by applying the above technique in a crude approximation in terms of kinematics and stress. The scheme of the problem is shown in Figs. 26 and 27.

Assume that the bottom die is immobile and that the top one travels downwards at a speed of 

, which is to be determined later by integrating the top die motion equation. The parallelepiped is assumed to be low, therefore the slippage zone 

 prevails at the contact with the tool; there is practically no adherence zone 

 without slippage between the tool and the metal, which adjoins the centre of the lower and upper bases, (

). Suppose that the material of the parallelepiped possesses certain rheonomous properties and that a known friction law prevails on the contact surface. The lateral surface of the parallelepiped is an 

-type surface where 

.

The virtual displacements of the particles in the fixed Cartesian co-ordinate system that can occur during parallelepiped setting by the instant t are assumed to have the following simple form:



      (189)

where 

 are the initial co-ordinates of the particles in the Cartesian co-ordinate system, which are taken as Lagrangian co-ordinates; 

 are the required unknown “coefficients” depending on time t and becoming zero when 

; 

 is the initial parallelepiped height. It is obvious that the expressions from Eq. (189) satisfy the space boundary conditions at any instant, namely, 

 when 
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. (The reader can select a displacement field in a better and more complicated form than Eq. (189), for example, in the form of power series segments; in this case, the solution will be more exact, though with more cumbersome computations, which do not seem to be expedient in an illustrative example.) Then the Cartesian co-ordinates of the material particles with the displacements 
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 in the fixed reference system at the instant t are



    (190)

Thus, the position of a material particle at the instant t can be determined by the vector function



,

with 

 determined by Eq. (190) and 

 are the basis vectors of the fixed Cartesian co-ordinate system, which are constant in physical space and in time. Note that the vector components in the fixed Cartesian system of reference and the vectors of its basis are marked off by parenthesized indices.

To describe deformation in terms of Lagrangian variables, we introduce convected and relative bases. The basis vectors of the convected co-ordinate system are defined by the formulae



.

The vectors of the relative basis are defined with the use of the basic vectors of the convected co-ordinate system by the formulae



.

Here,




is the volume of the parallelepiped constructed on the vectors of the basis. The vectors of the basis of the convected system, those of the relative basis and the components of any vectors in these bases are here marked off by indices (superscripts or subscripts) without parentheses.

Proceeding from the above considerations and the law of motion (190), we calculate the metric tensor components 

. Thus,




and, since the matrix 

,




Let us now calculate the material particle velocities. They are assumed to be virtual, as they satisfy the space boundary conditions (the incompressibility condition will be satisfied later), and they will be used in the principle of virtual velocities and stresses, 
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The expressions of Eq. (191) are the projections of the velocity vector on the directions of the vectors of the basis of the fixed Cartesian co-ordinate system. Velocity components in the convected co-ordinates are required. To define them, one needs only perform the operations 

, and 

. Calculate the components of the matrix 

 of transition from the fixed Cartesian (old) frame to the convected Lagrangian (new) one. It follows from Eq. (190), when solved with respect to 

 that



(192)

Incidentally, the determinant of the transition matrix (192) is




Then 

, or



 (193 a)

The covariant velocity vector components can be obtained by the operation 

 (“jugglery” with indices). Thus,



    (193 b)

The relations from Eq. (193) allow the strain rate tensor components 

 to be calculated in the Lagrangian co-ordinates. Recall that the covariant derivative of the covariant components 

 of the vector 

 field is the quantity 

, where the second-kind Cristoffel symbols are determined by the formula 

 It is obvious that in the instance under study the Cristoffel symbols are zero. Thus,



(194)

It is now possible to satisfy the incompressibility condition and to determine one of the unknown parameters, e.g. 

, by expressing it in terms of the others (the varied parameter 

). Thus, for the problem under study, in view of Eq. (194) and the fact that 
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 is written as



,

consequently,



.

Thus, the virtual particle velocity fields and the strain rate fields are expressed by means of one varied parameter 

.

Let us now find some other kinematic variables required for the further analysis. Shear strain rate intensity for incompressible material is
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The magnitude of the vector of tool sliding over the metal at the contact with the upper and lower die heads is



.     (196)

The contravariant acceleration components are calculated in the convected co-ordinate system by the formulae 




which, with regard to Eq.(193 a), give



 (197)

To obtain the covariant acceleration components, one needs to perform the operation of index lowering in Eq. (197), 

. Consequently,



.      (198)

Now let us construct a simplex virtual stress field, i.e., that satisfying the stress boundary conditions and the differential equations of motion. The following construction algorithm is convenient: three stress tensor components of six are selected randomly, though with regard for the boundary conditions; the other components are determined by integrating the equations of motion, the arbitrary integration functions being specified with regard for the boundary conditions. Thus, assume



. (199)

These expressions are seen to satisfy the condition of zero surface stresses on the lateral parallelepiped surfaces. (The reader is however advised to choose a more complete and, consequently, better representation of virtual stresses. For example, longer segments of the power series can be taken instead of Eq. (199)).

Substitute Eq. (199) into the differential equations of motion




taking into account that the gravitation loading 

 can be neglected in the problem under study. By integrating the result with regard for the boundary conditions on the lateral surfaces (zero surface stresses), the following expressions for normal stresses can be obtained:



(200)

Here, 

 are parameters to be varied. (Note that, generally speaking, 

 is an arbitrary function of the co-ordinates 

, and that it can be found from the variational principle applied here; however, it is assumed constant for simplicity.) The mean normal stress is determined as



.

The contravariant components of the stress deviator and the tangential stresses intensity are calculated, respectively, as



.

To write the functional in Eqs. (117) – (118), the constitutive equations (68), (69) and the friction condition (68 b) on the contact surface need to be specified. The material of the parallelepiped is assumed to be isotropic and incompressible. (The latter assumption was used in constructing the virtual state). It is also assumed that the hypotheses on co-axiality and similarity of stress deviators and strain rates are fulfilled for the material. Then Eq. (68) can be represented as



.                (201)

The material is assumed to be rigid-viscoplastic, then



.                (202)

The expressions in Eq. (69) degenerate due to incompressibility. The friction law is taken to be that of Siebel,
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The friction law (203) is seen to be independent of slip velocity and to have no inverse function. In Eqs. (202) and (203) 

 are the known quantities, namely, pure shear yield stress, “viscosity” and friction factors respectively.


For the case under study, in view of Eq. (201), the functional of the variational principle of virtual velocities and stresses (118) has the form 



,

or, allowing for Eqs. (202) and (203),



(204)

All the quantities involved in Eq. (204), except 

, were determined in the foregoing. Recall that the quantities to be varied are marked off with a prime. To determine 

, we consider a supplementary problem on the inertial motion of a hammer head after touching the parallelepiped. Suppose that M is head mass, then the equation of motion is



.

By substituting 
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 into the latter expression and integrating it, we arrive at the following:
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                     (205)

After substituting the virtual state into Eq. (204) and differentiating this expression with respect to the quantities to be varied, a set of ordinary differential equations can be obtained. It has been solved simultaneously with Eq. (205) by the fourth-order Runge-Kutta method. The calculations have been made for the following conditions: parallelepiped length 

m, width 

m, height 

=0.1m, material density 

kg/m

, pure shear yield stress 

Pa, and the friction factor on the head surface 

, head velocity at the instant of touch 

m/s, 

.


Some results of numerical simulation are now presented. Metal fracture is known to depend greatly on the level of mean normal stresses occurring during deformation. Figure 28 shows the distribution of 

 in the middle section of the parallelepiped (

m) at early (a) and late (b) in impact. High inertial loads early in impact are seen to produce more favourable stresses for deformation without fracture than late in impact; (the stresses vary over almost two orders of magnitude). The stress epure has a distinctive domelike shape. Figure 29 shows the variation of 

 in the parallelepiped centre for different ratios between head mass and parallelepiped mass: (1) – 712251; (2) – 178063 and (3) – 17806. The inertial loads occurring in impacts with high kinetic energy are seen to produce high values of hydrostatic compression in the parallelepiped centre.


The example discussed in this section is aimed at demonstrating solution technique rather than the mathematical simulation of parallelepiped forging. Basing himself on the reasoning presented here, the reader is able to make a more extensive simulation of forging. Readers ready to develop the solution can be advised to create a more complete model of the process. For example, account could be taken of a less rigid (elastic, elasto-viscous etc.) clamping of the anvil in the ground shaded in Fig. 26.

� EMBED PBrush  ���





Рис. 25. Распределение поврежденности в жесткопластическом стержне к моменту разрушения � EMBED Equation.3  ���











� The problems discussed in Sections 4.1 and 4.2 have been solved by L.F. Spevak with the participation of V.L. Kolmogorov.





� The problem was solved by A.V. Gorshkov and V.P. Fedotov with the participation of V.L. Kolmogorov
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