2.6. Extension of the model to other instances of fracture (metal fatigue under mechanical and thermo-cyclic loads)

Fracture theories, including the one discussed here, are formulated by a classical scheme (and this procedure in a way is permanent), a mathematical model is advanced, it is checked by experimental data drawn from the literature and one’s own experiments, a new formulation correcting the preceding one is proposed and then verified in practice etc. The study of experimental data on metal fatigue (see, e.g., [40 – 44]) has led us to extend the above-described model of fracture to other instances, such as fatigue, and it is presented here as a first iteration requiring experimental verification and a more precise definition.


The mechanics of continua deals with linear, surface and volume elements of a continuum, including at least several mono-crystalline grains. Let us call these elements macroscopic objects and the grains microscopic ones, see Fig.15. Now the mechanics of continua has to ignore finer structures, including grains and other even smaller items. (However, as computational abilities in this science increase, progressively smaller structural elements will come to be considered.) 


Consider sufficiently small deformations of the macroscopic elementary volumes of real metals in the processes of elastic deformation by mechanical or thermal loads. These deformations are usually considered to be elastic (reversible), though, strictly speaking, in reality they are not such. Owing to structural inhomogeneity, elastic deformations of the macroscopic particles (or volumes) of actual metals are accompanied by local sub-microscopic and microscopic plastic (irreversible) deformations and sub-microscopic discontinuities. In fact, elastic deformations of macroscopic specimens are known to display internal friction with the dissipation of mechanical energy, i.e., energy conversion into heat due to the plastic deformations and fracture of the structure in micro-volumes. (This statement was advanced by N. N. Davidenkov in the mid-20th century.) There are other experimental confirmations of the above-mentioned statement (see, e.g., [51]).


Besides, plastic deformation (even in micro-volumes) is known always to be accompanied by the appearance and development of submicroscopic discontinuities as deformation increases. Let us refer to this as damage, 

, meaning the same as before (that is 

=0 before deformation and 

=1 at the instant of macro-crack emergence; also that 

 is a fairly smooth function of co-ordinates and time). Assume the rate of increase of 

 is proportional to the rate of increase of macro-strain (the macroscopic volume in Fig.16) and that this is true as a first approximation for the monotonic development of the deformation of macro-volumes. The value of strain rate intensity consisting of the second invariant of the strain rate tensor, 

, should be taken as the rate of strain increment. If the material is assumed to be incompressible, however then 

 and 

. Note that the quantity 



                                   (112)

can be referred to as the amount of strain. Eq. (112) takes into account the whole strain suffered by a particle, whereas Eq. (90) does not allow for the spherical component of the strain rate tensor.


Thus, for a separate portion of monotonic deformation, the following kinetic equation can be written for damage,



.             (113)

Here, 

, and it is a function determined from experiments. It characterizes the intensity of damage increase and it is the first constitutive equation of the fracture theory under discussion. For evaluation, this function may be assumed as 

. The functions 

 and 

 are found from solving the boundary value problem for a specific process. The total damage of a material particle that has undergone n stages of monotonic deformation by time t is



                                 (114)

where 

 is the second constitutive function of the theory. 


In many specific and particular instances the mathematical model using Eqs (113) and (114) coincides with known empirical dependences established by now for metal fatigue from mechanical and thermal loads.


To conclude the chapter, we can state that the boundary value problem for the mechanics of solids for our purposes has been well formulated. Chapter 2 contains the boundary value problem relationships missing in Section 1.6, and so it is time now to solve that boundary value problem. At present, the author is unaware of other efficient techniques for solving the very complicated mathematical problem presented, except for the one discussed in the next chapter.

3. VARIOTIONAL AND EXTREME METHODS FOR SOLVING BOUNDARY VALUE PROBLEMS INVOLVING DEVELOPED DEFORMATION( 


In Section 1.6, the boundary value problem of the mechanics of developed deformation was formulated. It was stated in a rather general form, so that it can meet the requirements of impact mechanics, the mechanics of metal forming, the mechanics of machining and other applied disciplines. In principle, this problem can be solved by various methods, but, as is known, there is at present no technique for obtaining an exact solution to this boundary value problem. The choice of approximate solution methods is very poor.


In this chapter we propose our own approximate method. Any approximate method involves a sacrifice of something (or, it must satisfy something approximately). What is sacrificed in our method? We proceed by noting that all the equations of the mechanics of continua can be divided into three groups, kinematic, dynamic and constitutive. The first two groups are considered to be exact (as far as Newtonian mechanics can be), whereas constitutive equations are formulated on the basis of experiments and, of course, they are always approximate – they reflect complex interrelations between the stress and strain states of various materials in mathematical form. The method now proposed is remarkable in that the approximate solution obtained by this method satisfies all the requirements of kinematics and dynamics exactly, whereas the constitutive equations are satisfied only approximately. The method proposed enables one to construct a solution with increasing satisfaction of the constitutive equations. But is it reasonable to satisfy the constitutive equations with an exactness that exceeds that of the experiments made to formulate the constitutive equations? We believe it is not.


Although the choice of approximate methods is poor, there is nonetheless a choice. Is a new method required when there are the upper- and lower-bound methods, the finite element method and many commercial codes for calculation by these methods? Let us make a review of the recent publications on this subject-matter as available in applied science journals. (We present our apologies if we have missed something important in our review.)


In brief, the essence of the calculation methods is as follows. The articles, reviews, books and packages available employ the extreme or variational theorems of the Theory of Plasticity – the principles of Lagrange and Jourdain or Markov’s functional. Thus, for example, according to the Lagrangian principle, kinematically virtual fields of small displacements are constructed, and they satisfy all the kinematic limitations, namely, the linear correlations between strain tensor components and displacement components, the kinematic boundary conditions and the incompressibility condition if the material possesses this property. The problem solution (the actual displacement field) is found from this variety of kinematically virtual states by the minimization of the corresponding functional with respect to displacements. (Recall that neither velocities nor accelerations are varied in the Lagrangian principle, and that it is only small displacements that are varied). The displacement field corresponding to the functional minimum is the solution to the problem, and it is referred to as the actual field. By differentiating the actual displacement field with respect to co-ordinates, one can obtain the stress tensor field. By using constitutive equations, one can calculate the stress field from the strain field. Note that the stress field thus found does not satisfy the equations of Newtonian dynamics (the differential equations of equilibrium for slow flows, the differential equations of motion with distributed inertial loads being of great significance, the stress boundary conditions or other relationships). Why is this so? It is because the solution is approximate in practice although all kinematic equations are satisfied exactly and constitutive equations are used (i.e., satisfied exactly) for calculating stress fields by displacement fields. An approximate solution sacrifices the exact satisfaction of Newtonian dynamics.


The kinematically virtual displacement fields are assumed approximate in the solutions. Thus, according to the finite element method, virtual displacements are specified at the nodes of a grid dividing the body into finite elements. Within each finite element, a known approximation of displacements is assumed (linear most often), which is uniquely defined by the values of the virtual displacements at the nodes. This problem of functional minimization reduces to the problem of finding a function minimum depending on the values of displacements at the grid nodes. In the limit, if the finite element dimensions tend to zero (or if the number of the finite elements tends to infinity), the stress fields will tend to an ever improving satisfaction of the Newtonian dynamical equations on average over the volume. However, as the above-mentioned limits (zero and infinity) are unattainable in numerical calculations, the stress fields will always be non-Newtonian. Besides, since the discrepancy in the satisfaction of Newtonian dynamics tends to zero on the average over the body volume, it may prove to be wide in some small areas, and this is hardly admissible for prediction of material fracture in these areas. Having solved a problem by applying the Lagrange principle (for small displacements), researchers usually follow this or that stepwise procedure to describe a considerable amount of forming.


Note that some authors are more correct by preferring the Jourdain principle and the flow theory (not the Lagrange principle and the deformation theory) for describing large deformations. When the Jourdain principle is applied, it is only velocity fields that are varied, not displacements or accelerations. The same ideas of discretization are used as with the Lagrange principle. Strain rate fields are determined by velocity fields, and then stress fields are sometimes calculated with the aid of constitutive equations. In this case, stress fields are also unsatisfactory (non-Newtonian).


The use of Markov’s functional does not differ much from the above-mentioned principles, the only difference being that it is used for incompressible materials and that it is velocity fields and the mean normal stress that are varied. (Incidentally, the mean normal stress plays the part of the Lagrange multiplier with the incompressibility condition in the Jourdain principle.) The result of stress field determination is as poor as in the two previously-mentioned instances. 


How can a stress field be determined so that it is correct (i.e., Newtonian) and that the satisfactorily determined flow kinematics is not impaired? The Castigliano principle would seem to be applicable to the same problems. According to this principle, the actual field is chosen among virtual stress fields (satisfying all the equations of Newtonian mechanics and the stress boundary conditions) from the functional minimum condition of this principle. Unfortunately, the Castigliano principle is very seldom applied.


It should be also noted that in the applied literature there are only problems that could be solved by virtue of virtual strain principles. The functionals of these principles were expressed through kinematic variables alone. Incidentally, if the Castigliano principle would be applied, it could be seen that the functional of this principle can only be expressed through stresses (in the Newtonian sense). However, there are more general problems of the mechanics of solids where the functionals are not expressed only in stresses (for the Castigliano principle) and only in kinematic variables (for the Lagrange, Jourdain and Markov principles). Mixed principles can be applied to these problems, particularly, those proposed independently by Kolmogorov in [52] and Baltov in [53]. The functionals of the latter principles are expressed via virtual velocities and virtual stresses.


Another remark concerning the majority of the works available is that, as a rule, they employ a stepwise procedure to describe large deformations. The Euler-Lagrange approach is applied. A problem is solved in Eulerian variables at some instant, and then small displacements of the particles and their new co-ordinates are determined by the velocity field found (through multiplying it by a small length of time). The velocity field is again found (in Eulerian terms) for the new geometry of the body etc. Generally speaking, motion can be described equivalently both in terms of Eulerian variables and Lagrangian ones. However, in the majority of the works reviewed, preference is given to Eulerian variables, though this seems to be detrimental. (Some works of American authors using the Lagrangian description of motion mentioned in Part I of this book are worth paying attention to.) We believe that the Lagrangian description of motion in problems of large plastic deformation should be found at least as often as the Eulerian one.


Thus, the above-mentioned known methods are not satisfactory enough, and they do not offer a solution to the general boundary value problem formulated in Section 1.6. In [3, 8 – 10, 52, 54 – 59], which develop the ideas of the principle from [52], there is a new technique for solving rather more general boundary value problems. This technique enables one to avoid the above-mentioned disadvantages. It is described below and applied in this book. Proof of the theorems discussed below can be found in the above-mentioned references.

3.1. The principle of virtual velocities and stresses, the boundary value problem of impact and fracture of solids

Let us solve the boundary value problem of the mechanics of intensive (fast and developed), non-stationary deformation of solids discussed in Section 1.6 approximately. We solve it in two stages – space integration (at a fixed but arbitrary instant), and then time integration of the result obtained. Space integration is dealt with in Sections 3.1 to 3.4, time integration being discussed in Section 3.5.


The following definition is introduced. The actual stress-strain state is the state that is the solution to the boundary value problem of the mechanics of solids. In other words, the solution satisfies all the equations from the group of kinematic relationships, the group of equations of Newtonian mechanics and the group of constitutive equations.


Thus, we consider an arbitrary but fixed instant t. The notion of the virtual state is to be introduced. The virtual state is the state that, at a fixed instant, is described by the virtual fields of material particle velocity 

 satisfying all the relationships of continuum kinematics and by the virtual stress fields 

 satisfying all the relationships of Newtonian dynamics. The virtual velocity fields are sometimes referred to as kinematically admissible, whereas the virtual stress fields are called statically admissible (in terms of d’Alembert). The virtual state is a mathematical abstraction. There are infinitely many of them, because the number of unknown functions exceeds the number of equations relating them. In fact, the virtual state is not bound to satisfy constitutive equations. Let us discuss the virtual state in more detail.


Virtual velocity fields must be continuous in V and on S, and they must satisfy all the kinematic limitations, namely, the velocity boundary conditions. If the material is incompressible, virtual velocities must satisfy the incompressibility condition. The condition of compatibility of strain rate tensor components, i.e. strain rate tensor components (virtual) are related to velocity vector components through the conditions



.                    (115)


Virtual stress fields must satisfy the stress boundary conditions and the equations of motion



, 

.         (116)

Here 

 is material particle acceleration. Note that, according to the principle, the acceleration and displacement of material particles are not varied. Virtual stress fields must be such that they can ensure the discontinuity of surface stresses 

 in V and on S.


Note that virtual 

 and 

 satisfy all the equations of the mechanics of continua (which are linear in this case thus simplifying the practical application of the principle of virtual velocities and stresses) except the constitutive equations. It is to be remembered that temperature, as an implicit part of the functional, is actual, that it satisfies the differential equation of heat conductivity and that, naturally, according to the principle, it is not varied here. 


The integration of the differential equations of the boundary value problem discussed in Section 1.6 can be replaced by the equivalent solution of the following variational equation on virtual states:


 




(117)

where



(118)

The variational problem represented in Eqs (117) and (118) expresses the principle of virtual velocities and stresses. The variation is isochronous and only with respect to the virtual quantities  

 and 

 marked off by a prime in Eq. (118). The summation is made over the superscripts and subscripts i and j. After the variation, Eq. (117) has the form


(119)


Let us prove that the solution of the boundary value problem represented in Section 1.6 by differential equations with corresponding boundary conditions is equivalent to the solution of the variational equation (117) – (118) of the principle of virtual velocities and stresses. Note again that we have so far been dealing with a spatial solution of the boundary value problem at fixed time. The proof begins with the direct theorem saying that the differential equations of the boundary value problem result in the variational principle.


The set of equations for the boundary value problem includes the differential equations of motion (116). Incidentally, they are valid for both the actual flow (the result of solving the boundary value problem) and the virtual state. Since these equations hold for each material particle constituting the body of volume V, the following result of integration is valid:



.             (120)

Note that 
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 is here the virtual field of velocities, which, similarly to the actual field 

, satisfies all the kinematic equations.


Equation (120) can be transformed with regard for the fact that 
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Here we use the kinematic equations (115), the notion of deviators and the symmetry of the stress tensor (both actual and virtual). After transformations Eq. (120) acquires the form



.

Now, the second volume integral can be transformed with the aid of the Gauss-Ostrogradski formula, and it results in the following (considering that 

):



.         (121)


Note again that Eq. (121) is a consequence of 1) the differential equations of motion, the stress tensor symmetry condition (116) and the equation relating the stress tensor components 

 to the surface stress components 

, all constituting Newtonian mechanics, and 2) relationships describing continuum flow kinematics, see Eqs (115) etc. In other words, some of the boundary value problem equations (all the equations except the constitutive equations) result in Eq. (121). It is valid at any fixed time, for any virtual state and for any continuum. Eq. (121), which is an identity, analytically expresses the principle of virtual velocities and stresses stating that, for virtual states, the power of all the external and internal forces, including the mass and inertial forces (see the surface integral and the third member in the volume integral of Eq. (121)), is equal to the power of the stresses on the corresponding strain rates.


Let us complete the formulation of the variational principle of virtual velocities and stresses. We continue discussing Eq. (121), with some important additional restrictions imposed on the virtual state. Suppose that in the body volume V and on the surface S the virtual 

 and 

 differ from the actual 

 and 

 infinitesimally,


(122)

Here 

 are infinitesimal variations of the unknown mechanical variables. They are isochronous, i.e., a material particle suffers different stresses 

 and flow velocities 

 at the same fixed arbitrarily instant. Note that, in variation of this kind, the differentiation of the fields 

 and 

 with respect to co-ordinates and the operation of variation may be interchanged.


From now on, it is taken that the virtual fields 

 can be piecewise-continuous co-ordinate functions, i.e. their co-ordinate derivatives can be discontinuous on some surfaces in the body volume V and on some lines on the surface S, though the functions 

 themselves remain continuous. The virtual stress fields 

may have discontinuities 

 on some surfaces and lines in V and on S respectively. However, the discontinuities must be such that the surface stresses remain continuous everywhere in V and on S, i.e. that 

.


Imposing the above-mentioned restrictions on the virtual fields 

 and 

, substituting Eq. (122) into Eq. (121), neglecting higher-order infinitesimals and bearing in mind that Eq. (121) is valid for the actual state too, we obtain 



    (123)

Similarly to Eq. (121), Eq. (123) expresses the principle of virtual velocities and stresses, the only difference being that the deviations from the actual fields are arbitrary in Eq. (121) and infinitesimal in Eq. (123).


Eq. (123) has been deduced with the use of almost all the equations of the theory of plastic flow, except for the constitutive equations and surface boundary conditions. Thus, the virtual stress fields 

 and the particle velocity fields 

 satisfy all the equations of kinematics and all the equations of continuum dynamics, but they are not intercorrelated by the constitutive equations and boundary conditions.


We now make the final step in proving the direct theorem. Firstly, the constitutive equations should be taken into account. Recall (see Section 1.4) that we present constitutive equations as functionals, though, at a fixed instant, they acquire the form of tensor functions (together with inverse functions)



.    (124)

Secondly, account should be taken of the surface boundary conditions for 

 and 

 on the surface S (Eq. (86)), which, when t=const, can generally be assumed in the form of some finite relationships



.                   (125)

Thus, Eq. (123), with regard for Eqs (124) and (125), acquires the form




It coincides with Eq. (119), and this proves the direct theorem.


Let us now consider the inverse theorem saying that  the condition of the stationarity of the functional 

 (see Eq. (117),) which is given by Eq. (118), results in the differential equations of the boundary value problem for the mechanics of solids (Eqs (84) to (86)) as Euler equations. As is known, the validity of the direct and inverse theorems proves the equivalency between the solution to the boundary value problem formulated in the form of the differential equations (84) and (85) with the boundary conditions (86) and the solution to the variational equation (117) – (118) of the variational principle of virtual velocities and stresses. We will now prove the inverse theorem by conventional methods of the calculus of variations, i.e., by deducing the corresponding Euler equations. Note that the variational problem expressed by Eqs (117) and (118) is a conditional extremum problem, since the variable functions 

 and 

 (and they are the unknown functions to be sought) must be virtual, i.e. they must satisfy Eqs (115) and (116).


The conventional way of deducing the Euler equations reduces the problem expressed by Eqs (117) and (118) to the principal lemma of the calculus of variations. For this purpose, it is first of all necessary to make the variations of the unknown functions from Eqs (117) and (118) independent, with due regard for the relations between the functions to be varied. Let us vary the functional (118) from Eq. (117) on the class of virtual states. According to the first group of relationships in Eq. (116), the stress variations are related by the condition 

. By including this condition in the variational equation with the Lagrangian multipliers 

, we obtain



    (126)


Some auxiliary transformations are performed in order to take account of the rest of the restrictions imposed on the functions being varied and to reduce the problem to the unconditional extremum problem,











(127)







The chain of transformations will not be explained in detail here. The most important thing about it is that the right-hand parts of the above-mentioned expressions now contain independent variations of the unknown variables 

 and 

, these variations being obtained in the course of transformations with regard for the restrictions imposed on the virtual states.


The substitution of Eq. (127) into Eq. (126) and grouping give the following result:




We now apply the Gauss-Ostrogradski formula to the first volume integral and perform grouping in the surface integrals thereafter. The latter equation acquires the following final form:




In this equation, all the variations are arbitrary (

 in the surface integral and 

 in the volume integral). According to the principal lemma of the calculus of variations, the factors are zero with arbitrary variations. This results in the natural boundary conditions on the surface S and in the Euler equations in the volume V,


   (128)


Compare this result with Eqs (84) – (86). Seeing that 

 (the proof of this is omitted here for the sake of simplicity), the comparison shows complete identity. 


We now turn to some particular applications of the variational principle of virtual velocities and stresses. 
           The variational equation of the principle of virtual velocities and stresses is here written for rather general constitutive equations – for anisotropic material. What form will it acquire if one applies the frequently used hypothesis of material isotropy, its preservation in large forming and the hypothesis of the similarity of deviators? For materials of the kind, 







 (129)

Then the volume integral in Eq. (118) is



. (130)


In problems of mechanics of plastic metal forming the surface boundary conditions have a specific form, namely, that of Eq. (86 b). For problems of the kind, the surface integral over S in Eq. (118) is written as 



.  (131)


In the classical case of isotropic material deformation, when the stress deviator and the strain rate deviators are similar, with the boundary conditions (86 a) the variational equation (117) acquires the form 






.                                                   (132)

3.2. Some general theorems of the principle of virtual velocities and stresses

We now touch on some non-trivial propositions, which are theorems and can be proved. They are necessary for the effective application of the principle. These theorems are discussed in more detail in the literature mentioned in the preface to this chapter. When proving the theorems, we use some ideas of R. Hill [60].


1) The functional of the principle of virtual velocities and stresses, J

 (Eq. (118)) calculated at the extremum “point” has a relative minimum, i.e., its second variation is positive, 

 This proposition is valid if the functional of the principle is differentiable. To solve the variational equation 

, we use the mathematics of  the calculus of variation and its direct methods.


Let us calculate the second variation of the functional expressed by Eq. (118). Attention should be paid to the quantities to be varied. They are marked with a prime. The first variation has already been computed and expressed by the left-hand part of Eq. (119). Similarly, the computation of the second variation results in the following:





It is obvious that 

. In fact, the parenthesized expressions in the volume integral are positive (especially the squared variations) according to the postulates expressed in Eqs (72) and (73), whereas the parenthesized expressions in the surface integral are not positive. The reader can easily verify that
this theorem is valid for the boundary value problem of plastic metal forming and for the classical boundary value problem of the theory of plasticity, which, generally speaking, are special cases of the general boundary value problem discussed here.


2) The functional of the principle of virtual velocities and stresses calculated at the extremum “point” is zero, 

.

We discuss the functional 

 calculated at some stress-strain state (Eq. (118)), even if it is entirely different from the actual one. According to the principle of virtual velocities and stresses (non-variational), Eq. (121) is valid for the same virtual state. Eq. (121), which is identically equal to zero, is subtracted from Eq. (118). Naturally, the result remains the same,


   (133)

Note that the summation is made over the index first met in the limits of integration and then in the integrand. The sign 

 stresses that the variations assumed are not infinitesimal. 


Eq. (133) offers a proof to the theorem. In fact, if the virtual state coincides with the actual state, or, in other words, with the solution of the problem, then the integrals from Eq. (133) become zero (the virtual quantities in the upper limits of integration are marked off by a prime, whereas the quantities in the lower limits of integration are without primes). All the rest of the quantities from the right-hand side of Eq. (133) become zero, too.


Thus, the functional of the principle of virtual velocities and stresses is a residual in the satisfaction of the constitutive equations. The smaller the value of the functional computed at some virtual state, the closer it is (in terms of this residual) to the exact problem solution. If the functional becomes zero, the corresponding stress-strain state is the exact solution to the problem.


3) The functional of the principle of virtual velocities and stresses calculated at any virtual stress-strain state, even if it is entirely different from the actual one, always exceeds zero, 

, i.e. the functional of the principle calculated on the actual state is absolutely minimal. This proposition enables one to find a solution to the problem even when the functional of the principle is not differentiable. In this case, to solve the problem, the tools of mathematical programming should be applied, not those of the calculus of variations.


Continuing the discussion of Eq. (133), what is the sign of the right-hand side? The sign is governed by the form of the integrands 

. As was stated above, the first four integrands are increasing, whereas the last two ones are non-increasing.


To elucidate the sign of Eq. (133), we turn to the diagram in Fig.17. Points 1 correspond to the actual stress-strain state; points 2 correspond to the state resulting from the variation of the velocity field; points 3 correspond to the state resulting from the independent variation of the stress field. 
           Equation (133) involves three bracketed expressions of the same structure. The values of these expressions are geometrically interpreted in Fig.17. Let us discuss, for example, the first bracketed expression. Suppose that 

 and that 

, then it follows from Fig.17a that


,

i. e., that the expression is positive. The first bracketed expression is always positive with any possible combination of the signs of 

 and 

  (

 




 

; etc.). Fig.17b shows an example when 

 and 

. Since 

 and 

, 



;

it is obvious that



  and  

,

consequently, the second bracketed expression is positive.


Let us discuss the sign of the third bracketed expression in Eq. (133). It follows from the diagrams in Fig.17c that the analytical expressions corresponding to the areas of the shaded figures are negative. Since 

, the third bracketed expression in Eq. (133) is negative as a whole. Thus, in the end, taking account of the sign of the surface integral in Eq. (133), we can assert that the theorem stating that 

 at any virtual state is valid.


4) The solution of the boundary value problem formulated in Section 1.6 and obtained, particularly, with the application of the principle of virtual velocities and stresses does exist (this is not discussed here), and it is unique.


We use the rule of contraries. Suppose that there are two solutions of the boundary value problem. As is seen below, this assumption leads to a contradiction, and this is indicative of the impossibility of two or more solutions to one problem of the mechanics of solids, i. e., the solution is unique. So, assume that there are two solutions in volume V at an arbitrary, but fixed instant. One solution is subtracted from the other. The differences are denoted by 

 

. The following inequality is seen to be valid:



.               (134)

In fact, the factors in the volume integral have the same sign in pairs (according to the postulates in Eq. (73), greater values of strain rate correspond to greater values of strain resistance). As for the surface integral, the differences of the solutions have opposite signs, though the negative sign before the surface integral makes the result positive.


It can be easily proved that



.

Then inequality (134) can be rewritten as 



.                 (135)

Seeing that



,

we apply the Gauss-Ostrogradski formula to the first integral. Then, instead of Eq. (135), we have



.        (136)

Both of the solutions have been obtained by the variational method with the application of the principle of virtual velocities and stresses. Both of the solutions are certain to satisfy the differential equations of motion, with 

 being the same (it is only velocities and stresses that are varied in our variational principle). Consequently, 

 in inequality (136). With regard for the latter and the fact that 

, Eq. (136) results in a contradiction. The contradiction is indicative of the fact that the initial supposition of two solutions of the boundary value problem at a fixed instant is wrong. The fields 

 are determined uniquely with the application of the principle of virtual velocities and stresses. Finally, the uniqueness of the field 

 ensures the unique determination of the field 

, since the boundary conditions 

 obtain on a part of the surface. 


Of course, the mathematical problems discussed here should be formulated in a more state-of-the-art way, in terms of the functional analysis. Such attempts were made, e. g., by V.P. Fedotov [61] and E.G. Polishchuk [62]. However, it does not seem reasonable to complicate the content of this book. Note again that we are dealing here only with a space solution to the boundary value problem, i. e., space integration of differential equations (at fixed time).
3.3. The principle of virtual velocities and stresses for nonviscous media and dry friction. Discontinuous solutions 


The preceding two sections dealt with the variational method for solving the boundary value problem formulated in Section 1.6. The mechanics of solids exhibiting certain “viscosity” was studied there. In fact, all materials display viscosity to a certain extent in the sense that higher strain rates correspond to greater flow stresses, other conditions being equal. However, this viscosity can manifest itself to a different extent. For example, as the metal temperature decreases, it makes itself less evident. It is often neglected in calculations, particularly, in the case of developed cold deformation. This section deals with a rigorous substantiation for the application of the principle of virtual velocities and stresses to nonviscous media and dry (nonviscous) friction.


We assume that the material to be deformed is such that the hypothesis of the similarity between stress deviators and strain rate deviators is valid. That is, constitutive equations (68) have the following form, more specific than Eq. (68):



                            (137)

where 

 – shear strain rate intensity; 

 – tangential stress intensity. The value of 

 is independent of strain rate at time t, but it is predetermined by cumulate strain.


We also assume that there is no volume viscosity, i.e. that there is no relation between 

 and 

, see Eq. (69). Moreover, the material is assumed to be incompressible, 

. (Similar reasoning can be applied to compressible material.)


In the case under study, differential equations (84) and (85) of the boundary value problem are written as 



           (138)

For more certainty and greater practical applicability, we assume the following boundary conditions (characteristic of problems on piercing and metal forming):

                                       

 on  


                                       

  on  


                                      

 on  

                                      (139)

where specified co-ordinate functions are starred; the indices 

 denote the directions along the normal and tangent to the surface S; 

 is the friction law modulus (e.g., for the Coulomb friction law, 

 , 

 being a friction factor), necessarily 

; 

 is a unit vector of tool sliding over the metal (for metal forming problems) or projectile sliding over the target. The surface 

 is the tool-workpiece interface in metal forming problems or the projectile-target interface in piercing problems. It is not varied, but it is taken as it has been formed by time t.


As in Section 3.1, we deduce the variational equation for the boundary value problem presented in Eqs (138) and (139). The beginning of the deduction repeats exactly the reasoning resulting in Eq. (123). The difference appears after this equation, in the “last step”.


Eq. (123) takes account of the constitutive equations and the surface boundary conditions of the boundary value problem under study. Thus, the material is isotropic, at fixed time t it can be treated as perfectly plastic (it is devoid of strain rate hardening, but it can be hardened owing to cumulate strain, 

), and Eq. (137) is valid. Then, if Eq. (129) is taken into account, we have 

. Due to material incompressibility (

), Eq. (123) will have 

. The surface 

 consists of 

. It follows from the boundary conditions presented in Eq. (139) that 

 since surface stresses are specified on 

; similarly, 

 on 

, and the normal velocity component is specified on 

, hence 

. Finally, the friction law in Eq. (139) is independent of slip 

, i.e., it has no inverse function for it; the variations 

 and 

 are interrelated by the friction law. Consequently, Eq. (123) has the final form



       (140)


Eq. (140) is the variational equation of the principle of virtual velocities and stresses for nonviscous media and dry friction. The equivalency between the solution of this equation and the solution of differential equations (138) with boundary conditions (139) can be proved. The general theorems from Section 3.2, except for the theorem of the unique solution, are valid in the case under study. The substantiation to these statements can be found in [9]. Here our prime interest is in the practical applicability, i.e., how to find solutions to particular boundary value problems.


Note again that the variational problem from Eq. (140) is a conditional extremum problem. In addition to how they were defined above, the virtual stresses must satisfy the yield condition 

 in the volume V and the friction law 

 on the surface 

. In addition to the above definition, the virtual velocities must satisfy the incompressibility condition 

 in the volume V.


Generally speaking, exact solutions can be discontinuous. Virtual states can also have discontinuities. Discontinuous solutions are convenient in constructing approximate calculations. This is discussed in what follows.

The principle of virtual velocities and stresses was discussed in the foregoing on the assumption that the solution taken from the class of functions with weak discontinuities does exist. The principle of virtual velocities and stresses enables solutions with weak discontinuities to be constructed. On the surfaces of a weak discontinuity the velocities and surface stresses must be continuous. The possibility of a weak discontinuity for stresses imposes the following restriction on the jumps of the stress tensor components (see Eq. (65)): 

 where 

 are the differences (jumps) between the stress tensor components on one and the other side of the surface of a weak discontinuity. The above-mentioned variational equations retain their forms for solutions with weak discontinuities. In the general case of applying the principle of virtual velocities and stresses (see Section 3.1), significant discontinuities of required velocity fields (the velocity vector jumps) are inadmissible, except for one particular case.


Significant discontinuities of the velocity field are possible in a particular case. That is, for isotropic material, when stress and strain rate deviators are similar, when 

 is independent of 

 and there is no inverse function 

, when 

 is independent of 

 and there is no inverse function 

, see above in this section and Eqs (129 –(130). At an instant under study, 

 and 

 are predetermined by the deformation history in the preceding stages (strain hardening or softening). These properties are displayed by materials at low temperatures of deformation, when they manifest rather low viscosity. In this case (for materials of the kind), the variational equation of the principle of virtual velocities and stresses has a different form.


In fact, in this particular case, the volume integral (130) of the variational equation (118) is



.                 (141)

Here 

 and 

 are not to be varied. If the discontinuous solution is assumed for the velocity field, Eq. (141) undergoes the following transformation. Let there be a strong discontinuity of the velocity field on the surface 

 in the volume V. Compressible material admits a discontinuity both in the tangential (to 

) and normal directions. We select a layer with a depth 

 in the vicinity of 

. Now, let the velocities be continuous though changing sharply and linearly across the depth. The part referring to the layer is selected from the volume integral (141), and its limit is calculated at 

,


.              (142)

The integrand is calculated with the application of the orthogonal co-ordinates lmn, where n is directed along the normal to 

, l being directed along the velocity discontinuity. All the distortion tensor components except 

 and 

 are limited in the formula 

 (here 

 are strain rate deviator components), hence


,                  (143)

where 

 are velocity discontinuities (jumps) when the observer’s sight crosses 

. Similarly,



        (144)

where 
[image: image3.wmf]n
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,

 are mean material velocities on one and the other side of the discontinuity surface at some point; the parentheses of the last relationship in Eq. (144) contain acceleration components, which, according to the principle, are not varied.


Thus, Eq. (141) acquires the form



   (145)

If discontinuous solutions are used, the volume integral of the variational equation of the principle of virtual velocities and stresses must be written as Eq. (145).


Some transformations will happen to the differential equations of motion (“equilibrium”) satisfied by virtual stresses on the discontinuity surface, 

. In fact, these equations (in the orthogonal co-ordinates) 

 are valid for a thin layer with a depth 

, and they impose restrictions on the virtual stresses 

. After the passage to the limit 

, it is obvious that the equations of motion (“equilibrium”) will turn into the following conditions:



                 (146)

where 

 are the jumps of the virtual stress tensor components on the surface, 

 (when the observer’s sight crosses this surface). Note that 

 for incompressible material and that only one equality from Eq. (146) is valid.


Some other statements are useful for practical applications. When the material is incompressible (

), the discontinuities of the velocity component normal to 

 are inadmissible, 

. When the discontinuity surface 

 is crossed by an incompressible material particle, the amount of shear strain for this particle is incremented by the finite value



.                     (147)

When the discontinuity surface 

 is crossed by a compressible material particle, the volume expansion is incremented by the finite value



.                      (148)


In what follows the principle of virtual velocities and stresses discussed in Sections 3.1 – 3.3 is shown to be a generalization of well-known principles.

3.4. The principle of virtual velocities, the principle of virtual stresses, the upper and lower bound methods as particular cases of the general approach

As was said above, the classical theory of plasticity dealt with the boundary value problem where velocities are given on 

 and surface stresses are given on 

 on a known body surface 

 bounding a body volume. Besides, that problem assumed that the material flows without mass forces (

) and that the material to be deformed is incompressible. That boundary value problem was more particular than the one discussed in this book, but it remains significant. Two principles were proposed for solving it, namely, the principle of virtual velocities and the principle of virtual stresses.


The principle of virtual velocities deals with kinematically admissible flow velocity fields (the definition is given above). The search for the extremal field from the condition 



               (149)

gives the actual velocity field. The functional of this principle (the term in curly brackets) is expressed only in terms of the strain state if the constitutive equations are suitably formulated. The functional possesses minimal properties, both relative and absolute.


The stress solution to the classical boundary value problem can be found with the application of the second principle. The principle of virtual stresses presupposes only the variation of the stress state on statically admissible fields, the definition of statically admissible stresses being given above. The actual stress field is selected from all the statically admissible fields with the use of the necessary relative minimum condition, the functional minimum being absolute, 



.                 (150)

The functional of the principle of virtual stresses for the classical boundary value problem (the curly brackets in Eq. (150)) is expressed only in terms of stresses.


If Eq. (132) is compared with Eqs (149) and (150), it is obvious that the variational equation of the principle of virtual velocities and stresses afford, as particular cases, two classical variational principles discussed here, with their variational equations (149) and (150).


The classical theory of plasticity deals with an even more particular problem in the supposition that, besides the conditions mentioned early in this section, the material to be deformed exhibits perfect plasticity, 

. This function has no inverse one. In this instance, the variational equations (149) and (150) acquire the form





 EMBED Equation.2  
.        (151)

However, the second equation in Eq. (151) must be solved for extremum amongst statically admissible stresses, which, besides the conditions mentioned in the definition, satisfy the perfect plasticity condition 

. The introduction of the perfect plasticity condition complicates the construction of virtual stress fields due to the necessity of satisfying the non-linear condition of perfect plasticity. At the same time, the construction of kinematically admissible velocity fields becomes easier, because, for perfectly plastic materials, they admit discontinuities in the direction tangential to any surface in the body volume.


Upper and lower bound methods have been formulated for the classical boundary value problem on deforming perfectly plastic material. The functional in the curly brackets of the second equation in Eq. (154) has an absolutely minimal value on the actual state. (The actual stress state, including 

, is not marked off by a prime.) Then we can write that



or

                                                   

.                                            (152)

The integrals in the inequality (152) written for material deformation problems mean the power driven to the material through the surface 

. The actual power is on the left. The power calculated on the statically admissible stress state is on the right. The right-hand integral gives a lower estimate to the actual power of deformation (unknown). When 

 within 

, Eq. (152) offers the lower bound method implying that the deformation force calculated with the use of the statically admissible stress field gives a lower estimate to the actual deformation force. 


Turn to the upper bound method, which is formulated as follows: the deformation force calculated with the use of the kinematically admissible velocity field gives an upper estimate to the actual deformation force. It was proved by virtue of the fact that the identity




is valid for any kinematically admissible strain state,  including the actual one. The functional in the first equation of Eq. (151) possesses the absolute minimum property. By using the latter identity, we obtain


.                  (153)

Thus, the right-hand side of the latter inequality gives the upper estimate to the deformation power.

3.5. The variational principle for the temperature part of the problem


Let us now discuss the matter of determining temperature fields in a body undergoing deformation within the period of deformation 

. It is desired to integrate the differential heat conduction equation






(154)

at space boundary conditions (86) and initial conditions (87). Here 

 is specific heat; 

 is the heat conductivity coefficient; 

 is the Laplace operator; the stress and strain rate tensor components correspond to the actual stress-strain state.  
        The variational statement of the heat conduction problem is made by weakening Eq. (154), where the temperature variation 




is taken as a weight function. Different variational formulations of the temperature problem can be obtained from the latter equation, namely, the methods of Ritz, Kantorovich, Trefftz, Biot [63] and Ainola [64]. The first three methods are applied, as a rule, to solving stationary problems, whereas the methods of Biot and Ainola are applied to non-stationary ones.


Ainola’s variational principle reduces the heat conduction boundary value problem with the space boundary conditions




and the initial conditions




to the equivalent problem of functional minimization



        (155)

Here,



.


An approach ensuing from Ainola’s principle is proposed in this work, and it seems to simplify the numerical solution considerably.


Similar to what was done in Section 3.1, the non-stationary problem is solved approximately, in two stages – space integration at fixed time and then time integration. 


We define the virtual temperature field at an arbitrary fixed instant t. The virtual temperature field 

 is the temperature field which is continuous in the volume V and on the surface S and satisfies the space boundary conditions (86). The actual temperature field is the temperature field that is the solution to the problem (154), (86).

The integration of the above-mentioned boundary value problem can be replaced by solving the following equivalent variational problem on the virtual states



,




(156)

where



      (157)

The variation is isochronous and it is made only with respect to 

. No variation is made with respect to the mechanical variables and the time derivative of temperature 

. Space integration made with the application of the variational principle (156) – (157) reduces the parabolic heat conduction equation to a set of ordinary differential equations of the first order. The solution technique is discussed in detail in the next section.

Some applications of variational methods to solving heat problems in plastic metal forming were given in [62].

3.6. An approximate technique for solving boundary value problems 

on developed impact deformation and fracture of solids

Let us now describe in detail the technique for solving the boundary value problem stated in Section 1.6. As said above, the boundary value problem is solved in two stages. Stage I is space integration at an arbitrary instant on the basis of the variational principles offering an equivalent problem statement. The virtual states are chosen so that after the variation the general problem can reduce to the time integration of ordinary differential equations, which is stage II in solving.


We select a virtual stress-strain state and a virtual temperature field for the principles presented in Eqs (117) – (118) and (156) – (157) in the following form:




(158)

Here 

 are the Lagrangian co-ordinates, 

, 

 and 

 are the coefficients to be varied at fixed 

 (generally speaking, functions of time), and 

, 

 and 

 are the known appropriate co-ordinate functions. (In the right-hand side no summation is made over the recurring indices i, j.) The appropriate functions are selected so that 

, 

 and 

 are virtual. The variational Eqs (117) – (118) and (156) – (157) for the virtual fields selected acquire the form















    (159)



   


(160)

and   















(161)

All the parameters to be varied (marked off by a prime) are expressed in terms of the coefficients  

, 

 and 

 and the functions 

, 

 and 

. Recall that acceleration 

 in the principle of virtual velocities and stresses and the quantities 

 and 

 in the temperature problem are not varied and that they correspond to the actual state. By substituting



;



(162)




(163)

and   








(164)

(where the coefficients 

, 

 and 

 correspond to the actual state) into Eqs (159) – (161), equations for finding these actual coefficients can be obtained, which can be schematically written as 



. (165)

By solving this set of equations at the initial conditions corresponding to Eq. (87), one finds the unknown coefficients and thus determines the actual fields of velocities, stresses and temperature.


The solution to the boundary value problem obtained by the method proposed is approximate. Since the exactness of the solution to the ordinary differential equations is fairly high, the exactness of the solution to the non-stationary problem corresponds to the exactness of the solution to the variational problems, the latter being predetermined by the choice of virtual states. The correctness of the technique proposed has not been rigorously proved, as the unique existence of the solution to the non-stationary problems described in Section 1.6 remains unproved. We were guided by the existent and unique solution of the stationary problem of mechanics (Section 3.2) and the unique existence of the ordinary differential equations obtained. Furthermore, the correctness of the application of the technique was verified by test problems – the solution results were good. These test problems are discussed in the next chapter.
( The author would like to acknowledge help from Prof. E. Strickland, USA, with the preparation of the English version of this chapter.


� The section is written in co-operation with V.P. Fedotov and L.F. Spevak.
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