3. EMPIRICAL PREDICTIONS OF MINIMUM PERFORATION ENERGY

3.1. Introduction


The first studies of penetration and perforation processes were of an experimental nature. Test data were used in conjunction with analytical and dimensional considerations to define relationships between the various parameters. For example, Robins [72] found experimentally that "if bullets of the same diameter and density impinge on the same solid substance with different velocities they will penetrate that substance to different depths, which will be in the duplicate ratio of those velocities nearly, and the resistance of solid substances to the penetration of bullets is uniform". This discovery gave rise to the well-known Robins – Euler formula predicting the approximate depth of penetration,
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where a is a measure of the resistance to penetration, assumed to be constant and found from experimentation. Since the work of Robins a number of similar empirical equations predicting such parameters as the depth of penetration or the energy required to perforate a structure have been proposed. They are well-documented (for example see [1,2]) and are still widely used today.

3.2. Similitude theory and scaling

Similitude theory (or dimensional analysis) is a powerful tool in analysing experimental data and is often used in the derivation of empirical formulae. An early example of the use of dimensional analysis to model the effects of explosive loading of structures was that due to Hopkinson in 1915 as reported by Christopherson [73]. More recently Buckingham's Pi theorem was applied to projectile penetration of solids to identify 16 dimensionless groups, 14 of which are applicable to sub-ordnance impact [74]. The number of these groups is less than the number of variables and allows insight into how certain groups are related. The use of similitude theory to obtain dimensionless groups also allows scaling to be carried out. Scaled models can be tested at far less cost than prototypes and by removing dimensions from experimental groups the laws of scaling can be used to apply results from tests on a model to a prototype. However, for scaling laws to be applied with confidence experimental evidence is needed to confirm its applicability and accuracy when applied to a given situation: this is not available for all circumstances.


The application of scaling laws to dynamic loading of inelastic structures was discussed by Jones [75] who concluded that the laws of geometric scaling cannot, with confidence, be applied to impact loaded targets due to two factors: strain-rate effects and the existence of ductile – brittle transitions which may occur in either the model or the prototype tests. Dallard and Miles [76] and Booth et al. [77] also investigated the applicability of geometric scaling to impact situations and reached a similar conclusion. The latter paper includes an interesting appendix by Calladine who discussed both qualitatively and quantitatively the effect of strain-rate on the scaling laws and showed that the form of the load – deflection curve is important in determining the appropriate scaling system. In [77] Calladine's reasoning was seen to account for some, but not all, of the discrepancy between the predicted and actual behaviour of scaled models of plated steel structures impact loaded by dropped objects. It is clear that inertia also plays an important role in these problems, inhibiting the onset of bending dominated modes of deformation which will also disturb scalability.


Scaling theory was applied to low velocity projectile impact of plates by Duffey et al. [78] and produced compatible results for full and half-sized models to within 10%. Anderson et al. [79] carried out a computational study to quantify the effects of scaling on the penetration and perforation processes present in high velocity impacts (V
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 = 1.5 km/s). It was found that the impact resistance of small scale targets was slightly greater than for the full size models due to strain rate effects, although the differences were extremely small (typically 5% for scaling factors greater than 10) and difficult to separate from experimental scatter. Further work is needed to quantify the effect of strain-rate in the sub-ordnance impact range on the scaling process before it can be applied with confidence to dynamic penetration and perforation processes. Furthermore, material failure complicates the scaling process as the ductile – brittle transition problem is exacerbated during fracture and this phenomenon needs to be investigated further.

3.3. Empirical predictions of critical impact energy for steel plates


The use of analytical methods to predict the response of plates to projectile impact has increased significantly over recent years. However, the use of empirical formulae to predict the energy required to perforate target plates continues to be an important tool for the impact engineer. As the importance of impact mechanics has increased so has the development of empirical formulae to cover a wide range of impact situations. Some of these formulae were developed many years ago [for example Eqn (9), 1742] and others are the product of recent research. The most well-known and widely used empirical formulae predicting the minimum energy required to perforate a plate are


(i) De Marre (1886):

                 
[image: image3.wmf]E

a

d

h

c

p

=

×

×

1

5

0

1

4

,

,

, velocity range not stated.              (10)

Here a is a constant found from experimental evidence.


(ii) Stanford Research Institute Formula (SRI) (1963):
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validity range: 0.1 < 
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(iii) BRL formula (1968):
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The parameters in all these formulae [Eqns (10) – (12)] must be expressed in SI units. Ohte et al. [80] performed a series of experiments in which flat-faced, hemispherically-ended and conically-nosed cylindrical projectiles were fired against carbon steel target plates 7 – 38 mm thick in order to investigate the validity of these formulae. The projectiles had diameters ranging from 66 to 160 mm and masses ranging from 3 to 50 kg. The test results for the 7 mm thick plates (Fig. 29) show that under these test conditions for flat-faced and hemispherically-ended projectiles the perforation energy is similar and reasonably well predicted by these formulae, with the De Marre formula being closest. However for conically-nosed projectiles the required energy for perforation drops sharply as the nose angle is decreased. This decrease in the critical energy required was attributed to the decrease in effective contact area for the conically-nosed projectiles by Ohte et al. [80] who investigated the change in this contact area with target thickness and nose angle and developed an improved estimate of the perforation energy:
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where 
[image: image13.wmf]d

e

 is the effective nose diameter. 
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 for conically-nosed projectiles provided that 
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 is taken as being the effective projectile diameter. In this formula the perforation energy is given in joules when 
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 are in metres. These relationships were obtained from tests on SGV49 carbon steel plates 7 – 38 mm thick, 
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 < 180 m/s and were shown to predict critical perforation energy reasonably well.


Neilson [81] also investigated the applicability of the SRI and BRL formulae. Dimensional analysis was used to condense the results into a more manageable form and the data correlated for long projectiles, in the following form:

                
[image: image23.wmf]E

A

d

h

d

l

d

c

u

p

p

p

=

s

3

0

1

7

0

6

(

)

(

)

,

,

                        (14)

for parameter ranges 0.14 < 
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 > 13. In Eqn (14) A is a constant which equals 1.4 for calculation of the mean perforation energy and 1.0 for calculation of the minimum perforation energy. Figure 30 shows a comparison between Eqn (14) and test results obtained from flat-faced cylindrical projectiles with diameters ranging from 32 to 85 mm and masses from 1 to 20 kg striking target plates with thickness ranging from 1 to 25 mm.


The perforation energy for long penetrators appears to be independent of panel width for 
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 ratios greater than 22. There is not such a consistent relationship for the short and intermediate length penetrators. An explanation for this can be found in Fig. 4 [9]. For mild steel plates the perforation energy increases with increasing projectile mass (and hence increasing projectile length) to a plateau. Before this plateau the perforation energy is highly dependent on the 
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 ratio. In 1986 Jowett [82] assembled data from various sources and provided a bi-functional relationship for the perforation energy for shorter projectiles:
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having a validity range: 2 < 
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 term in Eqns (15) should be replaced by unity. Once again SI units are used in these equations. A comparison between these relationships, named the AEA short missile equations and the assembled experimental evidence [along with equation (14)] is shown in Fig. 31.


The importance of only applying the empirical formula to impact situations that lie within their stated ranges of applicability was highlighted by Wen and Jones [83]. Low velocity (< 20 m/s) impact tests with blunt and flat-faced penetrators were carried out on circular mild steel plates with 
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 ratios between 25 and 100. It was shown that the Neilson [Eqn (14)], SRI [Eqn (11)] and AEA short missile [Eqns (15)] formulae all over-predicted the critical impact energy required for perforation of the plates. It was also noted that the test parameters lay outside the stated ranges of applicability for all these equations. The BRL formula [Eqn (12)] gave the best prediction for critical impact energy for these tests. In [83] a new empirical formula was proposed which was obtained by dividing the energy absorbing mechanisms of the plate into two components: a local component consisting of indentation and shear; and a global component consisting of membrane stretching. Dimensional analysis was used to derive the following prediction for minimum perforation energy
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This formula was found to give good prediction of the critical perforation energy for mild steel plates when struck by blunt or flat-faced indenters. It was shown to be valid for high mass – low velocity impact tests where global target response is important in determining target response and where adiabatic shearing does not occur, e.g. plate impact from dropped objects.


Corbett and Reid [84] also noted the importance of local indentation in the response of steel plates to penetration from hemispherically-ended and flat-faced indenters. It was shown that indentation from hemispherically-ended indenters continued throughout the penetration process whereas indentation from flat-faced indenters only occurred during the initial stages of loading. The critical perforation energies obtained from the tests carried out in [84] were compared with the empirical predictions given by Eqns (11), (12), (14) and (15). In these tests 12.7 mm diameter hemispherically-ended and flat-faced projectiles were fired against steel plates between 1 and 10 mm thick (1.27 < 
[image: image42.wmf]d

h

p

/

0

 < 12.7) simply-supported on a diameter of 250 mm. It was shown that the SRI and Neilson equations [Eqns (11) and (14)] predicted the minimum energy required to perforate the steel plates with the hemispherically-ended projectile reasonably well, despite being derived from tests using flat-faced projectiles and being outside the stated ranges of applicability. By altering the constants in these two equations it was possible to fit the curves to the experimental results with reasonable accuracy. The resulting equations were quoted as:

SRI (hemispherically-ended projectile)
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Neilson (hemispherically-ended projectile)
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These equations were shown to be valid over the ranges 0.2 < 
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It was shown in [84] that the onset of adiabatic shearing is a critical factor in determining the impact resistance of plates and that hemispherically-ended projectiles require higher velocities than flat-faced projectiles to cause adiabatic shearing.

3.4. Empirical predictions of critical impact energy for steel pipes and tubes


There have been very few attempts at deriving empirical equations for the critical perforation energy of pipes and tubes. Stronge [85] fitted a power law to experimental data obtained from impact tests on steel tubes and derived the following relationships
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Here 
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 is the energy required for first fracture (in joules), 
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 is the energy required for perforation of the tube wall (also in joules), 
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 is the initial tube wall thickness (mm) and 
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 is the projectile diameter (mm). The relationships were derived from tests on 51 mm diameter, drawn mild steel tubing hit by spherical missiles with diameters 6.35, 9.53 and 12.7 mm (0.125 < 
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 < 0.25), weighing 1.04, 3.50 and 8.32 g respectively. The tube wall thickness ranged from 1.2 to 3.0 mm (17 < 
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 < 50) and the impact velocity was between 40 and 200 m/s. It can be noted that the form of Eqn (18b) is similar to that of the De Marre equation and the BRL equation [Eqns (10) and (12)] for the critical perforation energy of flat steel plates with the tube wall thickness (plate thickness) and projectile diameter being the key parameters. The powers by which these parameters are raised are similar for both plates and tubes with the projectile diameter being raised to the power 1.5 for plates and 1.48 for tubes, and the thickness parameter being raised to the power of either 1.4 or 1.5 for plates and 1.63 for tubes. It should also be noted that the constants in the De Marre and Stronge formulae are not independent of the length dimensions as the sum of their powers does not equal 3.


Neilson et al. [61] also derived an equation for the perforation energy of steel pipes. They carried out tests in which 1.8 m long, 150 mm bore pipes with wall thickness between 7.2 mm and 18.2 mm (9 < 
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 < 0.38). The critical perforation energy was seen to be dependent on pipe wall thickness and projectile diameter in a similar manner to that proposed by Stronge [85], with a relationship
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being proposed (where C is a constant). Dimensional analysis was used to derive the following equation for the critical perforation energy
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The ultimate strength of the pipe material was not quoted in [61] but a value of 
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 was recommended, this value predicting perforation energies approximately 30% below that found in the tests. It can be noted that this equation is very similar to Neilson's flat plate equation [Eqn (14)], but with the 
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4. ANALYTICAL SOLUTIONS

4.1. Energy and momentum methods


The first attempt to investigate analytically the mechanics of penetration has been attributed to Bethe who carried out a static analysis of the penetration process (see for example [86]). The analysis was subsequently improved upon by Taylor [87] who evaluated the work required to expand a hole in the target plate to the radius of the bullet. Whereas Bethe tried to utilize a relationship between the state of stress in the plate and its deformation, Taylor realized that, due to the variation in the ratios of the principal stresses during the penetration process, the only relationship that is valid is between stress and strain increments. This relationship was used along with the Mises yield criterion to establish the stress distribution in the plate and the work required for perforation, giving
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This is the work required to produce a symmetrical mode of deformation (Fig. 32) and is lower than Bethe's value of
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The ratio 
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 is the height of the crater resulting from projectile perforation, is a useful parameter in defining the geometry of the plastically deformed portion of the plate: this ratio is known as the shape factor. Taylor's analysis of symmetrical plate deformation gave a shape factor of 2.66, considerably higher than Bethe's result of 2. The work required for unsymmetric deformation to failure (i.e. petalling) was given [87] as
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The latter mode of deformation occurs more commonly in thin ductile plates (
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< 1) than symmetric deformation, which tends to occur in thicker ductile plates (
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> 1) [3]. Taylor's analysis was based on quasi-static considerations with no account taken of inertial effects. Later authors [88,89] have extended Taylor's theory to include these effects. Thompson [90] arrived at the same expression for the energy required for unsymmetrical plastic hole enlargement as Taylor but via a different and much simpler path.


Experiments were performed by Woodward [91] in which conically-tipped cylindrical missiles perforated steel and aluminium plates and the results were compared with an improved version of Taylor's expression [Eqn (21)] obtained by a more accurate numerical integration [92], namely
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for symmetrical mode of deformations, giving a shape factor of 3.835. For the work done in unsymmetric perforation, Woodward [91] improved Eqn (23) (which he termed the Thompson model) by including bending effects and the contribution of the ductile hole enlargement element of the symmetric mode that occurs when the plate thickness is over 1.8 times the projectile radius, giving
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Woodward proposed that a realistic yield stress should be used to take into account strain hardening effects. A value of the yield stress at a natural strain of 1.0 was found to give good correlation with the experimental results. A comparison between these models and the experimental results is shown in Table 1. It can be seen that the theories, once the appropriate modifications are made, give reasonable, if a little low, estimates of the critical projectile velocities. It was suggested in [91] that the discrepancy between the observed shape factors (
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) and the constant predicted value of 3.835 is due to work hardening effects.


By considering dynamic effects, Thomson [90] also analysed the penetration and perforation of a plate by projectiles of various shapes giving an estimate of the residual projectile velocity, 
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and an estimate of the critical energy,
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where the constant A = 1 for a conically-tipped projectile and A = 1.86 for an ogival-headed projectile. Sodha and Jain [93] subsequently corrected the analysis for the ogival-headed projectile, giving a new value of A = 0.62.


Recht and Ipson [32] used momentum considerations along with an energy balance to analyse the mechanics of penetration by projectiles. The analysis yields the following expression for residual projectile velocity, 
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which can be reduced to:
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Zaid and Paul [94] used momentum balance, extending the method used by Thompson [90], to determine the residual velocity of a perforating projectile following normal impact of a thin plate to give the relationship
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In [95], Paul and Zaid apply the method to various truncated conical and ogival nose shapes and compare the results with experimental data. In [33], the analysis is extended to account for oblique impact.


All of these approaches to estimating the energy required for perforation and the residual velocity of the projectile neglect any bending, stretching or dynamic effects beyond the zone of impact. This implies that, for the analyses to be valid, the impact velocity must be appreciably larger than the ballistic limit. Various studies (e.g. [86,96]) have confirmed that the energy and momentum approaches give a good prediction of residual velocity when the impact velocity is suitably high, but tend to over-predict as the impact velocity approaches the ballistic limit. Calder and Goldsmith [15] plotted the results of their experiments along various analytical predictions. Whereas all three theories give good prediction of velocity drop at high impact velocity, only Eqn (27) with its experimentally obtained value of 
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 gives good agreement at velocities near to the ballistic limit (Fig. 33).

Table 1. Comparison between experimental and theoretical ballistic limits of steel and aluminium targets (taken from [91])

	Projectile diameter* (mm)
	Target material **
	Projectile diameter to plate
	Observed shape factor
	Observed critical velocity
	Observed failure mode
	Taylor critical velocity, derived from Eqn (24) (m/s)
	Thomson critical velocity,
	Modified Thomson critical

	
	
	thickness ratio
	 (

)
	 (m/s)
	
	Calculated from 

 value (m/s)
	Calculated from Vickers Hardness (m/s)
	Eqn (23) (m/s)
	velocity, Eqn (25) (m/s)

	4.76
	steel (1)
	1.5
	2.24
	330
	duction hole formation
	301
	267
	-
	-

	4.76
	steel(2)
	1.0
	1.96
	375
	“
	312
	210
	-
	-

	4.76
	Al(1)
	0.75
	1.68
	225
	“
	174
	180
	-
	-

	4.76
	Al(2)
	0.375
	1.46
	454
	”
	372
	324
	-
	-

	6.35
	steel(2)
	1.33
	2.18
	442
	“
	432
	292
	-
	-

	6.35
	Al(1)
	1.0
	1.83
	293
	“
	242
	250
	-
	-

	6.35
	steel(3)
	1.0
	1.84
	603
	“
	645
	391
	-
	-

	6.35
	Al(2)
	0.5
	1.57
	536
	“
	480
	418
	-
	-

	4.76
	steel(4)
	3.0
	-
	202
	dishing
	147
	121
	75
	117

	4.76
	steel(5)
	3.0
	-
	243
	dishing
	218
	193
	112
	172

	4.76
	steel(6)
	3.0
	-
	240
	petalling
	250
	227
	128
	197


* 45( conically tipped projectiles

** for details of target materials see Ref. [91]
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