4.2. Analysis of failure mechanisms

4.2.1. Failure by plugging


The energy and momentum methods of analysis outlined in the previous section are useful in predicting the velocity drop experienced by a projectile striking a target plate at velocities appreciably higher than the ballistic limit of the target. They are not suitable for instances where the response of the target material at and away from the point of impact significantly affects the penetration process, i.e. impact velocities near to the ballistic limit. Also they fail to provide any insight into the actual process of perforation. These perforation processes (see Fig. 1) are numerous and extremely complicated, occurring either singly or as a combination of two or more.


Ductile hole enlargement has been discussed in Section 4.1. It occurs when conically-tipped projectiles perforate ductile plates of all thicknesses, although it is most commonly found in intermediate to thick plates [Fig. 34(a)]. Failure by plugging occurs when blunt projectiles strike intermediate to thick targets: a band of high shear strain is produced at a radius close to the projectile radius and this results in a plug being sheared off [see Fig. 34(b)]. Catastrophic shear results from an interplay between thermal softening and work hardening of the plate material within the shear bands (see, for example Recht [97]). When the local increase in temperature has a negative effect on the strength of the material which is equal to or greater than the positive effect of strain hardening, catastrophic shear failure will occur. The importance of the temperature effect on failure by shear has been the concern of a number of authors, the majority of whom have been interested in the metal forming aspects (punching and blanking) of the process. Recently however, its importance in the role of projectile impact has been realized. Stock and Thompson [98] show that for aluminium alloys these bands of intense shear generate enough heat to raise the temperature of material within these bands to melting point, and in steel to give changes of phase. These effects are commented on by Johnson [1]. Lethaby and Skidmore  [99] showed the plugging process to be a slow one under threshold conditions, and this means that for thin plates much of the energy is expended on global target deformation before plugging is completed. This implies that any analysis of thin plates which assumes failure by shear but does not take into account global target deformation is only applicable for high velocity impacts. It was also shown that, for plugging to occur, far greater energies are required at impact velocities near the ballistic limit than at impact velocities appreciably higher than this.


Woodward [100] used Taylor's equation for ductile hole enlargement [Eqn (21)] to predict the change in failure mode from ductile enlargement to adiabatic shearing. It was shown that the mode of failure will change from one of ductile hole enlargement to one of plugging when the depth of plate to be penetrated diminishes to below 
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In the analysis it was assumed that, due to thermal softening, the work required to eject the plug, once formed, is negligible. Equation (30) also includes a term for the work required for indentation.


For thin targets (
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) it was assumed that no work is done in radial hole expansion and that the work done in cone indentation is given by:
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These equations are plotted in [100] for various plate thicknesses and compared with experimental values obtained from impact tests on three different types of plate: (i) 5083 Aluminium, (
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= 452 MPa); (ii) IMI Titanium 125, (
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= 1167 MPa); (iii) IMI Titanium 318, (
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= 1685 MPa). The value for 
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 was obtained by fitting the stress – strain curve obtained from a quasi-static uniaxial compression test to a function of the form 
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, n being the work-hardening index and 
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 the flow stress at a natural strain of 1.0. No attempt was made to incorporate strain-rate or temperature effects into the estimate of dynamic yield stress and hence the value of 
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 obtained using this method is somewhat arbitrary and will only be valid for low velocity impacts.


In Woodward's tests 50 mm square panels were struck by cylindro-conical projectiles with various cone angles, diameters of 4.76 mm and a mass of approximately 3 g. A more detailed experimental investigation into plugging behaviour of thin titanium alloy plates when struck by this type of projectile [18] has been described earlier (Section 1.2). The aluminium and titanium 125 plates were seen to fail by ductile hole enlargement with a plug being formed and the titanium 318 plates were seen to fail by plugging.


These simple theories were seen to give a reasonable estimate of the work required for failure. Care must be taken though to select the appropriate formula (depending on the expected mode of failure). Furthermore one must only apply the formulae to situations where the expected mode of failure is dominant. The presence of global bending or membrane stretching, for example, will introduce errors into the predictions. For the tests reported in [100] where 50 mm square plates were struck by 4.76 mm diameter cylindro-conical projectiles, it is unlikely that either of these factors are present to an appreciable degree. The tests involving aluminium plates tended to have higher failure energies than predicted by the theory and this is probably attributable to the relatively low flow stress of aluminium allowing a small amount of global bending in these plates.


In [101] Woodward uses mechanical models similar to those used in [100] along with micromechanical considerations to clarify the two types of failure mode described earlier along with failure by discing. This latter mode was seen to occur when the plate thickness is less than the projectile diameter.


Bai and Johnson [102] outlined the historical progress made in understanding the penetration and perforation process from both the point of view of projectile impact and high speed blanking. Extensive work on high speed blanking that had been performed by workers such as Chang and Swift [103] and Johnson and Slater [104] was utilized to give a better understanding of cold and hot blanking processes.


A constitute relationship which relates temperature as well as strain to stress was used to develop an adiabatic shear stress – strain relationship for materials with a given work-hardening index, n, and critical adiabatic shear strain, 
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. The latter parameter is defined as the shear strain at which thermoplastic shear instability first occurs. This relationship, given by
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is plotted for various values of 
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i

, and n in Fig. 35. By assuming a quasi-static stress distribution in the plate beyond the punch periphery the following strain distribution was derived
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where 
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 is the shear strain at the punch periphery. A full discussion of the meaning and ramifications of Eqn (33) can be found in [102], where Bai and Johnson show how it describes many of the phenomena associated with plugging.


By assuming that the penetration process is completed once the penetration depth equals the plate thickness, the energy absorbed in the plugging process is given by
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where 
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p

 is the shear stress at the punch periphery. By substituting in suitable approximations for the shear strain and the displacement of the punch, x, an expression for the non-dimensional energy absorption capability is derived:
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where 
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. It is clear from Eqn (35) that the energy absorbing capability of a plate is a function of 
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 The dependence of 
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 on the thickness of the plate, for various values of 
[image: image26.wmf]g

i

 and 
[image: image27.wmf]n

 (typical of many metals) can be seen in Fig. 36. Increasing both 
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 and 
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 increases the energy required for perforation, although increasing 
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 has the greater effect. For low values of critical shear strain, increasing the plate thickness does not increase the non-dimensional energy absorbing capability of the plate since the onset of instability occurs early in the penetration process after which the plate loses most of its resistance. This does not mean that there is no benefit to be had from increasing the plate thickness since 
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 is a function of the reciprocal of plate thickness. It does mean that, for materials with low values of critical strain, increasing the thickness of the plate is an inefficient way of increasing its resistance to penetration.


In conclusion it can be said that, in order to prevent projectile perforation by plugging, a material should be chosen with a high critical strain and a high work hardening modulus. This was illustrated in [102] by comparing the resistance of mild steel, aluminium alloy and titanium to plugging. Of the three materials the titanium, despite its high strength, was seen to be the most susceptible to plugging. This is due to its low value of critical strain.

4.2.2. Failure by petalling


Failure by petalling [Fig.1(f)] occurs when thin plates are struck by cylindro-conical projectiles. High circumferential strains induced in the target material by the projectile cause radial cracking and the subsequent rotation of the affected plate material produces a number of, often symmetric, petals. Landkof and Goldsmith [105] carried out a theoretical and experimental investigation of this type of penetration process. Thin, soft aluminium plates were struck by hard-steel cylindro-conical projectiles causing failure by petalling. The analysis was in the form of an energy balance in which the energy absorbed by the plate consists of that due to crack propagation, petal bending and plate dishing. Griffiths' postulate, which states that the amount of energy per unit crack area needed for extension of the crack, G, must be greater than the unit surface energy of the extended crack, G
[image: image32.wmf]c

, for radial crack growth to occur, was used to obtain an expression for the energy absorbed due to crack propagation. The resultant expression is
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where 
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 is a function of the number of petals, 
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 is the crack length. The value of 
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 was subsequently shown to be small when compared with the plastic work involved in petal and plate bending.


For the analysis of the energy absorbed due to bending, each petal is treated as a triangular cantilever of constant thickness and the energy absorption process is split into two stage: (i) outward crack propagation accompanied by a corresponding simultaneous outward motion of the plastic hinges; (ii) a rotation of the petals about their hinges during and after stage (i). For the analysis of stage (i) the solution of Parkes [106] which was adapted for triangular cantilevers in [1] was used. This allowed an expression for the projectile velocity at the end of stage (i) to be derived. An energy balance based on the rigid-body rotation of stage (ii) along with an estimation of the energy absorbed due to plate dishing as obtained by Calder and Goldsmith [15], was used to enable an expression for the final velocity of the projectile to be established
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where the energy absorbed through plate dishing, 
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 is given by
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In Eqns (37) 
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 is a mass ratio parameter, 
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 and 
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 are the petal rotation angles at the ends of stages (i) and (ii) (see Fig. 37), 
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 is a constant and 
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 is a work hardening parameter. 
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 is the central plate deflection. The value of the ballistic limit is obtained by equating the right hand side of Eqn (37a) to zero.


This analysis is in good agreement with experimental results, especially at higher impact velocities, although its weakness is that it relies on certain parameters that can only be obtained by post-experimental measurement. The ways in which these parameters vary with projectile nose angle, target material properties, target geometry etc. are unknown at present.


It was noted in [105] that the energy absorbing capacity of a plate changes if there is an initial hole in the plate at the point of impact, and that there is an initial hole size for the plate that produces an optimum energy absorbing capability. An analysis was presented which incorporated this initial hole but it was hampered by the need for a dynamic relation between 
[image: image47.wmf]r

D

, the hole radius at the onset of cracking and 
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, the initial hole radius. In the analysis the initial hole radius was assumed to increase to 
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 before cracking is initiated. There is also the need to modify the analysis of plate dishing for this type of plate impact problem.

4.3. Global plate response to projectile impact


Up to now all the analyses mentioned have concentrated on the response of the target within the impact zone (with the exception of the petalling analysis of [105], which included a plate dishing component). This approach is suitable for many impact situations, such as those which involve high speed impact velocities, low plate diameter to projectile diameter ratios, or high plate thickness to projectile diameter ratios. When any of these criteria are not met a global response of the plate may occur which will have to be included in the predictive model of the projectile – target system. Although this review is not meant to include the many works on impulsive loading of structures, these have served to highlight some important aspects of global target response to transient loading and some of the more relevant works are discussed.


Earlier predictions of global plate response (for example, that of Florence [107]) considered only bending effects, but these tended to over-predict the central plate deflection for a given level of impulsive loading, particularly at the higher levels of loading. Later studies, such as those by Jones [108] and Dienes and Miles [109], considered membrane effects and showed that these dominate the response of thin plates to impulsive loading (Fig. 38).


A review of work on the deformation of thin plates subjected to impulsive loading in air has been carried out by Nurick and Martin [110,111]. In the first of these papers, which covers the theoretical studies, the work of a number of authors was collated and presented in such a way that allowed a direct comparison between them to be made.


The second of Nurick and Martin's papers [111] reviewed experimental studies of the subject. It correlated the results from these studies by expressing them all in terms of a damage number. Johnson's dimensionless damage number [1], given by
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(where 
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 is the damage stress of the plate material) was modified by Nurick and Martin to incorporate target dimensions and loading conditions giving two new damage numbers:
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In these equations the damage stress in Eqn (38) is replaced with the static yield stress of the material. The results of fourteen experimental investigations were compared in tabular and graphical form in [111] and compared with the theoretical predictions discussed in the companion paper [110]. When plotted in the form damage number versus deflection to thickness ratio, the majority of all the data points from the various sources were seen to lie close to a straight line within an error band of one deflection to thickness ratio (Fig. 39).

These straight lines are given by the relationships:
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for circular plates, and
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for rectangular plates. The above relationships were obtained from a least squares analysis of the data (109 data points for circular plates and 156 for rectangular plates), although it appears that no attempt was made to fit the relationships to the condition of zero plate deflection at zero impulse.


Wierzbicki and Kelly [112] investigated the response of viscoplastic plates when subjected to projectile impact. The projectile was considered to be a rigid mass with zero dimensions in the analysis. Thus local effects at the projectile – target interface were ignored and only global plate response considered. A previous paper by the authors, referred to in [112] concerned a similar problem and found that the final central deflection of the plate was little affected by the inertia of the plate itself and was equal in the first approximation to the deflection of a massless plate. This result was used to justify the use of quasi-statical considerations to solve the dynamic problem. By assuming that no energy is dissipated in the first stage of motion, the duration of which is assumed to be very small, and that all the kinetic energy of the projectile is converted into plastic deformation of the plate, an energy balance was proposed. The energy absorbed in plastically deforming the plate was calculated from the quasi-static Mises – Huber yield condition and corresponding velocity profile. In [112] Onat and Haythornthwaite's quasi-static analysis of plates at large deflections [113] was used to extend the dynamic analysis of Wierzbicki and Kelly to include large deformation response.


The results of the analysis when applied to a typical steel are shown for a number of viscosity constant in Fig. 40. In this figure the broken line is the pure bending solution obtained from the small deflection analysis and the full lines are the large deflection solutions that take into account the development of membrane stresses at large deflections. Figure 40 illustrates the effect of the visco-plastic constant, 
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, on the response of the plate: 
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 denotes a rigid – perfectly plastic material whilst 
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 = 0 implies a totally rigid structure; mild steel has a visco-plastic constant between 200 and 1000.


The fact that membrane forces dominate the response of thin plates to impulsive loading was utilized by Beynet and Plunket [11] who analysed the response of thin aluminium plates to projectile impact when struck at velocities below the ballistic limit. The plate was assumed to deform in a mariner dominated by membrane stretching, bending and elastic effects were ignored. The transverse dynamic equation of motion of a thin plate was reduced to
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where 
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; c being the elastic membrane wave velocity. Equation (41) can be solved either by using Laplace transforms or finite difference approximations when the appropriate boundary and initial conditions are inserted. The results of this analysis are compared with experiment in [11]. Bullets were fired at 51 mm square aluminium plates with thickness ranging from 0.6 mm to 4.8 mm. The analysis was seen to give good agreement with the thinner plates (
[image: image62.wmf]h
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 < 2.5 mm) but to overestimate the deflection of the thicker plates. The lack of correlation for the thicker plates was due to the various assumptions that were made in the analysis such as the neglect of bending and shear effects, becoming invalid as the plate thickness increases.


Calder and Goldsmith [15] used a somewhat simpler method to find the permanent central deflection of a thin plate when subjected to projectile impact. This analysis, unlike Beynet and Plunkett's, requires an assumed velocity profile and hence the deformed plate profile is assumed at the start and not deduced from the analysis. The analysis is an improved version of that proposed by Duffey (referred to in [15]) and takes into account work-hardening of the plate material.


The plastic work absorbed by the plate, given by the integral
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was equated to the loss in kinetic energy of the projectile. Circumferential strains were assumed to be negligible and radial strains were related to the deformed profile by the relationship
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This relationship was subsequently shown to be valid experimentally by Levy and Goldsmith [16]. Figure 41 shows the radial strain distribution observed in 1.27 mm thick aluminium plates when struck by a hemispherically-ended cylinder at three different (sub-ballistic limit) impact velocities. Also shown in this figure is the strain distribution given by Eqn (43) for one of the tests. It can be seen that away from the area of contact between the plate and the projectile (radius = 6.35 mm) Eqn (43) is in good agreement with the experimental results. However, as the region in the vicinity of the area of contact is the most important in terms of predicting plate perforation, the results are of limited use in predicting failure strains. The strains in Fig. 41 refer to residual strains as measured using a grid method. Levy and Goldsmith [16] observe that this is not a particularly accurate method of measuring strains and it is subject to large errors, of the order of 15%.

The Mises yield criterion for a strain-hardening material was used in [15] to define the stress state during plastic deformation of the target, and an assumed displacement profile 
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 was used in conjunction with Eqn (43) to define the radial strain distribution. When these conditions are inserted into the integrand in Eqn (42) (the second term of which is assumed zero due to the negligible circumferential strains), and equated with the drop in the projectile kinetic energy, the following equation is derived
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where 
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 is the work hardening parameter in the Mises yield criterion and 
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 is the loss in kinetic energy of the projectile. When an appropriate correction factor is introduced to take into account the deviation of the plate profile from 
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 in the vicinity of the projectile contact area, this expression is seen to predict the permanent central deflection well when applied to the test conditions described in [15].


The analysis is only valid up to perforation. In the tests reported in [15] a steady increase in permanent central deflection with projectile impact velocity [as predicted by Eqn (44)] was observed up to perforation whereafter further increase in projectile velocity resulted in a decrease in the permanent deflection (see, for example, Fig. 8).


A solution to the problem of predicting the permanent central deflection of a rate-sensitive material when subjected to projectile impact was attempted by Calder et al. [114] who presented a solution based on the technique of Kelly and Wilshaw [115]. A constitutive relationship between stress and plastic strain-rate of the form
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was proposed. Here 
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 is the reciprocal of the viscoplastic relaxation time of the target material, and has been found to be approximately 400 s
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for mild steel [115] (in [114] a value of 1000 s
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 is assumed for aluminium, and between 400 and 50 s
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 for mild steel). The constitutive equation was written in terms of curvature rates and bending moments and solved in Laplace transform space for small deflections. Bending action only was considered, and the projectile was regarded as an impacting mass of negligible radius. An expression for the displacement at the centre of the plate at any time, t was derived, namely
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where 
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 is the static plastic collapse load according to the Mises yield criterion, 
[image: image77.wmf]b

m

p

=

16

2

m

a

/

 and 
[image: image78.wmf]a

gm

4

0

0

3

3

4

=

/

h

M

. Equation (46) is valid until the projectile comes to rest and the permanent central deflection (ignoring elastic recovery) was found by substituting 
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 in Eqn (46), where t, is the time taken to bring the projectile to rest, obtained by solving the equation
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     (47)

This analysis ignores membrane effects which, as has been mentioned earlier, leads to gross over-prediction of the central deflection of the plate at large deflections. It is not surprising to see therefore, that, when compared with experimental evidence, this analysis gives a reasonable prediction of the permanent central deflections of aluminium plates up to deflections of 10 mm (corresponding to a central deflection – plate radius ratio of 0.06) after which it overpredicts the results (Fig. 42). This analysis also neglects work hardening effects.

4.4. Analysis of pipe response to dynamic loading


Predicting the response of cylindrical shells to asymmetric local loading has proved to be extremely difficult. For low velocity-hight mass impact situations rigid-plastic analyses of the behaviour of tubes under quasi-static local loading (for example [52-55, 116-118]) can be used to predict the load-deflection characteristics of tubular members under local impact loading. In these analyses the local indentation of the tube wall and the global bending of the tube are considered separately. The global bending can be fairly accurately modelled using rigid-plastic beam theory but the local indentation component relies on either semi-empirical considerations to predict dent depth [54, 118] or a minimization procedure to obtain the dent length [52, 53, 117]. At present tubes with low 

 ratios (<35) can be modelled fairly accurately using rigid-plastic beam theory. For tubes with larger 

 ratios, local denting becomes more significant and the need to take into account the reduced plastic moment at the dent becomes more important.


Analytical solutions for dynamic loading of pipes and tubes have usually been based on either a kinematic approximation to the deformation field or simplification of the stress field by neglect of the less important stress resultants. T he latter approach has allowed the use of analogies between an axisymmetrically loaded cylinder and a beam-on-foundation to simplify the problem to a tractable level. In the case of local indentation of a tube wall the dominant shell forces are axial stretching and circumferential bending: these are analogous to foundation pressure and beam bending moment respectively in the beam-on-foundation problem. This analogy has been successfully used to predict quasi-static elastic tube response by Calladine [119] and quasi-static rigid-plastic tube response by Reid [120]. Yu and Stronge [121] and Stronge [122] analysed the large deflection response of a rigid-plastic beam-on-foundation to impact loading to gain a greater understanding of the response of thin, ductile tubular members to impact loading. A “membrane factor” was introduced into the analysis to account for the effect of axial forces resulting from large deflections and this was shown to significantly reduce the beam deflection when the deflection exceeded the beam thickness. An example of the response history for a beam-on-foundation is shown in Fig.43. Figure 44 shows the final profile of the beam for three different projectile-beam mass ratios. It can be seen that, when other parameters are kept the same, the slower but heavier projectiles cause larger final deflections and larger deformed extents than faster but lighter projectiles. In addition it can be seen that the latter type of projectile produces more curvature of the beam near the impact point than the former type.


Wierzbicki and Hoo Fatt [123] analysed a string-on-foundation problem and generalized the analysis of [121] to account for moderately large deflections in the range 

, where 

 is the maximum central deflection and 

 is the radius of the analagous tube. Wierzbicki and Hoo Fatt [124] used this approach to analyse a cylinder being damaged through being struck by a free-flying object. An exact solution to the string-on-foundation problem was obtained using the method of characteristics and an approximate solution obtained using averaged "equivalence" parameters. Figure 45 shows both solutions for dimensionless shell deflection for a typical example of a mass striking a shell, and indicates the validity of using the approximate approach.


A simplified failure criterion was proposed in [124] to predict the onset of perforation. Failure was assumed to occur when the contact shear force in the string model is equal to the through-thickness shear resistance of the shell wall. This yielded an expression for the ballistic limit:
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   for shear plugging failure;       (48à)
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   for tensile necking failure.  (48b)

These two failure criteria are equal for a critical strain to rupture, 
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 = 0.16. Comparison with a limited number of tests, reported in [123] indicate that these simple failure criteria give reasonable estimates of the ballistic limit. It should be noted though that these criteria do not take into account thermal effects, strain-rate effects or strain-hardening. They also imply that the ballistic limit is independent of projectile mass which is known to be untrue in many circumstances [9,22,62]. In addition they take no account of projectile nose shape. It is therefore likely that these criteria will give reasonable predictions of ballistic limit only over a limited range of impact conditions.


The response of cylindrical shells to dropped objects was also analysed using the string-on-foundation analogy in [124]. An energy balance equating the kinetic energy of the dropped object to the plastic work done in deforming the tube was used to predict dent depth as a function of height of drop (Fig. 46), yielding a relationship:
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where 
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 is the central deflection of the tube wall and c is the transverse wave velocity.


Stolarski [125] analysed the deflection produced in a spherical shell when struck by a rigid cylinder. An upper-bound approach was used, with the proposed kinematic mechanism being one suggested by experimental evidence. The yield condition employed was that for a rotationally symmetric shell made of Tresca material and the equation of motion for the shell was solved numerically. A plot of central deflection versus time for a particular set of conditions is shown in Fig. 47 and the variation of maximum deflection with impact velocity can be seen in Fig. 48. This relationship, as in the case of projectile impact on flat, thin, viscoplastic plates at small deflections, is linear, being of the form
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This can be compared with Wierzbicki and Hoo Fatt's result for the deflection of a cylindrical shell under impact loading from a dropped object, Eqn (49) [124] which implies a relationship of the form
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If the projectile radius is small compared with the target radius then the equation of motion for the spherical shell derived in [125] may be integrated once and solved analytically for 
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. For example, a spherical cap of height, 
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 clamped at radius R struck by a projectile will experience a maximum deflection given by
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which for large deflections can be approximated to 
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A comparison between the exact numerical solution and the analytical approximation [Eqn (52)] for the example cited in [125] can be seen in Fig. 49. The difference between the two is negligible.
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