6. IMPACT RESISTANCE OF SOILS, CONCRETE AND STEEL – CONCRETE STRUCTURES


In the preceding sections the penetration and perforation of metallic plates with kinetic energy penetrators has been discussed and the dominant and most frequently occurring failure mechanisms have been identified. When targets made of a non-metallic material are struck by projectiles the penetration processes and failure mechanisms involved are often very different.


The penetration of soils and terrestrial media has been of long standing interest to impact engineers. Young [6] gives a brief account of the historical development of the various empirical equations that are still used today to predict the depth of penetration, Z, achieved by a projectile striking a semi-infinite body. These equations are

Robins – Euler (1742):
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Poncelet (1830):
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Resel (1895):
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Petry (1910):
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In Eqns (68) – (71) 
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 are constants from the empirical polynomial relating the impact force to impact velocity,
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In Eqn (71) Z is in ft, 
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 is in ft/s, W (projectile weight) is in lb, 
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p

(cross-sectional area of projectile) is in square inches and K is a constant dependent on the target material.


Young [6] carried out a number of experiments to determine the effects of various parameters, including projectile nose shape, projectile mass and area and impact velocity on the penetration distance. The results were used to propose an empirical prediction of penetration distance,


[image: image9.wmf](

)

Z

SN

W

A

V

=

æ

è

ç

ö

ø

÷

+

´

-

0

53

1

2

10

1

2

0

2

5

,

ln

/

  for 
[image: image10.wmf]V

0

200

<

 ôóò/ñ;    (73a)

[image: image11.wmf](

)

Z

SN

W

A

V

=

æ

è

ç

ö

ø

÷

-

0

0031

100

1

2

0

,

/

   for  
[image: image12.wmf]V

0

200

>

 ôóò/ñ.       (73b)

In these equations S is a soil constant (examples of which are given in [6]) and N is a nose performance coefficient (between 0.56 for a flat-faced projectile and 1.32 for a shallow cone). All the other parameters are as defined, and in the same units, as for the Petry equation [Eqn (71)]. It is interesting to note that a bi-functional relationship was also proposed by Jowett [82] for the impact of finite thickness steel plates. This relationship [Eqn (15)] related perforation energy to relative plate thickness and the function to be used depended on the relative thickness of the plate tested.

Various analytical models have been developed to predict the depth of penetration and the forces experienced by the projectile during penetration into semi-infinite targets (for example [155 – 163]), and a number of experimental studies have been carried out to investigate their authenticity [164, 165]. The application of numerical methods to the problem are discussed in [147, 160, 166, 167]. In addition to these Backman and Goldsmith [2] devote a section of their paper to the penetration of semi-infinite bodies.


The projectile impact on materials such as wood [168, 169], ceramics [170 – 173] and GRP or CFRP composites [174 – 180] has also received attention from a number of researchers.


A material that is of particular interest to impact engineers is concrete. Where weight and space are not factors that need to be kept to a minimum, concrete in the form of walls or barriers is often used. One very important example of an industry that relies heavily on the impact resistance of concrete is the nuclear industry which requires the walls of certain structures to be able to withstand impact by accidentally generated missiles [181]. Although there have been attempts at modelling the impact of semi-infinite concrete structures with projectiles (for example [182, 183]), this section in common with the previous sections on the impact of metallic targets, is only concerned with the impact of finite thickness concrete targets. Once again the emphasis is placed on work highlighting the penetration and perforation processes involved when a target is struck by a projectile travelling at near its ballistic limit.


A review of the progress made in understanding the mechanics of projectile impact on concrete structures has been made by Kennedy [184]. The processes of penetration and perforation of concrete is very different from that of metal and is summarized in Fig. 71. Once the initial projectile velocity is large enough to damage the concrete, pieces of it spall (are ejected) from the impact face of the target forming a crater that extends over a considerably greater area than the impact area. As the impact velocity is increased the projectile penetrates to depths greater than that of the spall crater, producing a hole in the concrete with a diameter only slightly greater than the projectile diameter. Further increase in the initial projectile velocity results in cracking and then scabbing (ejection) of concrete from the rear surface. The zone of scabbing is generally more extensive but less deep than that of the front spall crater. As these ejected concrete pieces (from the rear surface) could themselves constitute a hazard it is often necessary to define two thicknesses when designing a protective shield: the minimum thickness to prevent perforation, p, and the minimum thickness to prevent scabbing, s. Once scabbing has begun, the depth of penetration increases rapidly with increasing impact velocity leading eventually to perforation of the target as the penetration hole extends through to the scabbing crater. As in the penetration of metal plates, for certain target geometries global response will play an important role in the impact resisting capabilities of the target [184].


Analysis of steel reinforced concrete is extremely difficult as the dominant energy absorbing mechanisms and failure modes of the constitutive elements are different and interact with each other. Consequently the majority of investigations into the penetration and perforation of concrete targets have been of an empirical nature. In most cases the empirical predictions of penetration into semi-infinite targets have been adapted to predict thicknesses required to prevent perforation by a projectile with a given velocity for finite thickness targets. The study of penetration of projectiles into concrete structures has been heavily influenced by the interests of military establishments. As Kennedy [184] points out, the majority of published work has been concerned with deriving empirical formulae for the normal impact of concrete structures by non-deformable projectiles, this being assumed to be the most destructive combination for a given projectile mass and velocity. These empirical formulae were obtained prior to 1946, with the majority of the subsequent work being carried out by the military and thus being classified. The most commonly used formulae are listed below:

1. Modified Petry formula [see Eqn (71)]
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where p, s and x are in inches and 
[image: image16.wmf]V

0

 is in ft/s. 
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. There are two types of modified Petry formula. In the modified Petry I formula 
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is a function of the concrete strength (see Fig. 72).

2. U.S. Army Corps of Engineers formula (ACE)
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where
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Here, D is the calibre density of the projectile (lb/in
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), 
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 is the projectile diameter (in), 
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 is the ultimate compressive strength of the concrete (lb/in
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3. Modified National Defence Research Committee formula (NDRC)
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Here, N is a missile nose shape factor: N = 0.72 for flat nosed missiles, 0.84 for blunt nosed missiles, 1.00 for spherical missiles and 1.14 for sharp nosed missiles. The concrete strength is given by K = 180/
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c

. p/d and s/d are then calculated from Eqns (75).

4. Amman and Whitney formula (for 
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and Eqns (75) are used to evaluate p and s

5. Ballistic Research Laboratory (BRL) formula
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All these formulae are applicable to situations that lie within the following parameters (unless otherwise stated):
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As with all empirical formulae those stated here are only valid when the above conditions are met and any deviation from these is liable to render the formulae highly inaccurate. The two restrictions most likely to be violated in non-military impact situations are those of target thickness – projectile diameter ratio (
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The only one of the above empirical formulae to have a theoretical basis is the NDRC formula and it is probably because of this that it is the only one that can be successfully extrapolated beyond the conditions from which it was originally derived. By creating a parabolic fit between 
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 = 3 to Eqn (76) the following expressions were derived [184]
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 is obtained from Eqn (76). For larger 
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The NDRC formula, because of its theoretical basis and ability to be extrapolated over a wide range of variables, is recommended for use by Kennedy [184]. Over the entire range of variables mentioned (missile diameters up to 16 in, calibre densities between 0.2 and 16 lb/in
[image: image50.wmf]2

 and missile velocities 100 – 3000 ft/s) the NDRC formula predicted the perforation and scabbing thicknesses to within 
[image: image51.wmf]±

20%. In these tests concrete reinforcement of 0.4 – 0.6% EWEF (Each-Way-Each-Face ratio of steel to concrete) was used. It was noted that all the empirical equations assume no projectile deformation or target deformation away from the area of impact.


Kennedy [184] also describes how the NDRC formula can be used to describe the force – time history of the impact process as well as discussing qualitatively the effects of missile deformation, target inertial weight and global target response on the penetration process.


Sliter [181] collected test data on the impact of concrete targets from a number of different sources and used them to assess the validity of the older empirical formulae. Like Kennedy [184], Sliter came to the conclusion that the NDRC formula is the most suitable for the widest range of impact parameters. Two parameters that are not incorporated in the NDRC formula are the relative aggregate size (d
[image: image52.wmf]p

/C) and the amount of reinforcement. Sliter [181] investigated the effect that these parameters have on the impact process and found that there was only a weak dependence of penetration depth on both these factors, over the range 0.5 – 50 for the former and 0.3 – 1.5% for the latter (where the percentages refer to the areal percentage of reinforcement in both directions). There were no test data available for heavily reinforced targets most likely to be found in conventional reinforced concrete walls (1.5 – 3% each way).


Sliter [181] investigated the applicability of the NDRC formula to low velocity impacts (< 300 m/s). It was found that the penetration depth was predicted to within 25% by the NDRC formula provided that the depth of penetration was greater than 0.6d
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 which corresponded to an impact velocity of greater than 150 m/s for the test conditions that were analysed. When the penetration depth achieved by the projectile was less than 0.6d
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 the NDRC formula tended to over-predict the penetration depth. Sliter [181] also compared experimental data from a variety of sources with the predictions of equations and found that agreement between the two was poor for large 
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 ratios. This was attributed to the relatively large-area planar impact (all the tests involved flat-faced cylindrical projectiles) inducing scabbing from the tensile shock wave resulting from the compressive wave reflected from the back surface, while producing little penetration. It was concluded that the NDRC formula could not be used with confidence in impact situations with low 
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 ratios to predict the scabbing thickness. Two alternative empirical formulae were proposed for these situations which were derived from tests involving the thickness – diameter ratios of interest. These were the Bechtel formula,
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and the Stone and Webster formula
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in which C is a coefficient dependent on the 
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 ratio. The range of test parameters to which these equations can be applied are 3000 lb/in
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 < 3. These formulae were seen to be in reasonable agreement with experimental data.


For predicting perforation thickness, Sliter [181] found the following CEA/ADF formula to give the best agreement with the experimental data available
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In Eqn (82) the density of the concrete has been taken as 2500 kg/m
[image: image66.wmf]3

 and the reinforcement quantity as being between 0.8% and 1.5% each way. Sliter noted that reinforcement quantity is likely to have a substantial effect on the perforation thickness and therefore Eqn (82) should not be used on concrete structures with reinforcement quantities outside the range stated.


Perry et al. [185] discussed the factors influencing the response of fibre-reinforced concrete slabs to impact and noted that changing the amount of fibre reinforcement may change the mode of failure of the concrete with unreinforced concrete tending to fail by shear punching and steel-fibre reinforced concrete tending to fail by flexure and crushing of the concrete. In [186] the damaged specimens from these tests, along with damaged dome specimens from a series of impact tests carried out on reinforced concrete domes [187], were repaired using a variety of cementitious and epoxy resin formulations. The static strengths of the repaired structures were tested and the efficiency of the repairs was assessed. It was shown that when certain conditions were met it was possible to regain a large percentage of the original strengths of the structures using both types of repair material.


Barr et al. [188] report on preliminary impact tests on reinforced concrete structures. They reviewed past work on similar impact tests, ran a series of tests themselves and introduced a short finite difference code, SARCASTIC, intended as a vehicle for assessment of the different theoretical constitutive models for concrete. The results of the tests were compared with the modified NDRC formula (76) and the velocities for perforation compared with the CEA/ADF formula.
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where 
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 is the concrete density and h is the concrete thickness. The limits of applicability of Eqn (83) are 20 < 
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 < 200 m/s, 0.3 < h/d < 4, 30 < f
[image: image70.wmf]c

 < 45 MPa. It should be noted that the CEA/ADF formula does not contain a reinforcement quantity-dependent parameter.


Comparison with the modified NDRC formula showed an agreement within 30%, but comparisons with the CEA/ADF formula were not possible since the test parameters were outside the range of validity. The results of the computer runs were inconclusive indicating that further work needs to be done before the code can be used as a design tool.


Initial tests on the possibility of scaling showed promise, and this theme was followed up in a subsequent report [189]. In this report tests were described on models of 1/2 – 1/16 typical full size dimensions with reasonable agreement between the models and the prototype being found.


A common method employed to increase the impact resistance of concrete slabs is to attach front face and/or rear face cladding to the surfaces of the slab. This serves either to increase the ballistic limit of the structure or to reduce the required wall thickness to obtain a particular ballistic limit. The effect of reinforcing a concrete structure in this way has been studied by Barr et al. [190,191] who conclude that:


(i) The perforation energy of a barrier with impact face cladding is equal to the sum of the perforation energies of each of the components considered alone.


(ii) Rear face cladding behaves in a manner analogous to additional rear face bending reinforcement. Cladding and internal reinforcement are equivalent when the cross-sectional areas of reinforcement and plate and the elasto-plastic parameters of the steels are equal.


For reinforced (both internally and externally) target slabs, the following amendment to the CEA/ADF formula that incorporates a reinforcement parameter was proposed:
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where r, the bending reinforcement quantity in % EWEF (Each-Way-Each-Face), lies between 0 and 4%.

(iii) For concrete barriers with steel cladding on both impact and rear faces, the perforation energy for the composite is equal to the sum of the perforation energies of the front face cladding alone and that of the remainder of the barrier. Tests on blockwork barriers showed that these appear to have a perforation energy about 70% that of monolithic barrier of the same strength as the blocks themselves.


The residual velocity of a 25.4 mm diameter, 0.5 kg mass, ogival-nose projectile perforating 178 mm thick reinforced concrete slabs was shown to be disproportionately influenced by the unconfined compressive strength of the concrete by Hanchak et al. [192]. A three-fold increase in the unconfined compressive strength resulted in a decrease in the residual velocity of less than 20%. It was shown that the influence of a lateral restraining pressure on the concrete exerted by the surrounding mass served to decrease the influence of the unconfined compressive strength. It was also shown that the ballistic limit was insensitive to whether or not the projectile struck the reinforcing bars during penetration.


The response of steel – grout sandwich plates to projectile impact was investigated by Corbett and Reid [193]. It was shown that sandwich plates made up of two 1 mm thick steel skins separated by grout fillers with thicknesses ranging from 3 to 40 mm were not as efficient at withstanding projectile impact in terms of energy absorbed per areal density as monolithic steel plates for the impact conditions used in the test programme (a 12.7 mm diameter hemispherically-ended cylindrical projectile travelling at between 40 and 200 m/s). It was shown that the dominant energy absorbing components were the rear face skin and the grout filler, with the impact face skin absorbing relatively little energy. Two examples of impact damaged sandwich plates, one thin and one thick, are shown in Fig. 73. The plates have been dismantled to show the dominant deformation and failure mechanisms of the different plate components. It can be seen that for both of the plates the impact face steel skin is deformed less than the rear face skin, with the impact face skin of the thick plate showing signs of "reverse dishing", that is dishing in the opposite direction to the direction of impact. This is a result of frontal spalling of the grout filler. Figure 73(c) also shows a typical failure cone that is formed when moderately thick concrete or grout is subjected to projectile penetration.


In a similar set of tests Corbett et al. [194] investigated the resistance of steel – concrete sandwich tubes to penetration from hardened steel indenters. Concrete tubes were clad on their outer and inner diameters with 1 mm thick steel skins and subjected to local loading, quasi-static and dynamic. The tubes tested all had an inner diameter of 120 mm. Concrete filler thicknesses of 10, 20 and 38 mm were examined. As in the sandwich plate tests, loading was applied with a hemispherically-ended indenter. The performance of the sandwich tubes under this type of loading was compared with that of monolithic steel tubes tested in a companion paper [62], discussed in Section 2.5. It was found that, over the range of thicknesses tested, this type of sandwich construction required a filler thickness approximately five times greater than the thickness of monolithic steel tubes in order to be able to absorb the same amount of impact energy under similar loading conditions. It was shown in [193] and [194] that the impact resistance of steel – concrete and steel – grout sandwich structures were less sensitive to projectile mass and projectile nose shape than monolithic steel structures. In addition the resistance of the sandwich structures to projectile penetration was seen to be most effective when the rear face skin was undeformed, thus providing substantial support to the filling medium. It was therefore proposed that a sandwich structure that is effective at resisting projectile penetration would be one that was made up of a thick steel backing plate/shell that would absorb most of the energy and provide support to the filler and a bulky filler held in place by a relatively thin impact face skin. The latter components of the sandwich would protect the energy absorbing rear face skin from "unfavourable" impact conditions (such as sharp-faced, rapidly moving projectiles) by spreading the load and reducing the penetration velocity.


Gandeker et al. [195] carried out low velocity impact tests on sandwich plates with foam, resin and softwood fillers. This type of sandwich construction was shown to compare favourably to stiffened monolithic steel skins under impact conditions similar to those likely to be encountered on offshore platforms, e.g. a falling drill collar. The most efficient of these fillers in terms of resistance to penetration was found to be softwood. A simple design procedure was proposed which allowed an estimate of the energy absorbing capacity of the panels to be made. A full-scale test in which a drill collar with mass 3560 kg was dropped on to a wood-filled sandwich panel from a height of 15 m (impact energy = 532 kJ) was carried out. The panel had 12 mm thick steel skins, a softwood filler thickness of 240 mm and measured 900 x 900 mm. The sandwich panel absorbed the impact energy without allowing perforation to occur and the final deflection of the bottom skin was similar to that predicted by the theory (98 mm).

7. CONCLUSIONS

7.1. Experimental studies


The quality and quantity of experimental studies on projectile impact on structural elements has been steadily increasing over the last few years. New experimental techniques have been developed and improved instrumentation has allowed more detailed information to be collected. However there are still a number of areas to which little attention has been paid and a number of gaps in the database assembled from those areas of research that have been addressed.


Almost all of the experimental studies have consisted of small scale impact tests, that is, projectiles with diameters up to 15 mm striking targets with thicknesses up to 10 mm and spans up to 500 mm. There has been very little non-military investigation into larger scale impact situations such as those that may be encountered following an explosion of a substantial piece of machinery. The experimental data that have been published concerning projectile impact has been somewhat patchy. The nature of the topic is such that a large number of combinations of projectile and target types are involved and consequently it is rare that any two studies can be directly compared. It is hoped that the section on experimental investigations contains sufficient details concerning the tests that have been carried out to allow any comparison that can be made between them to be identifiable and to highlight the differences in experimental details and methods.


Some observations that were common to a number of investigations can be mentioned. For example, metallic plates when struck by a rigid projectile were seen to experience maximum deflections which increased in magnitude with increasing impact velocity up to the point at which perforation of the plate occurred, whereafter further increase in the impact velocity resulted in a decrease in the maximum plate deflection. Also the velocity drop experienced by the projectile was seen to fall to a minimum value as the impact velocity was increased to just above the target's ballistic limit and then rise monotonically with increasing impact velocity. The different failure modes that occur when a metallic plate is struck by a projectile have been well documented. The type of failure that occurs in metals is primarily dependent on the projectile nose shape, the ratio between the target thickness and the projectile diameter and the material properties of the target material. In general, relatively thin, ductile targets when struck by blunt projectiles fail through discing – a thinning of the plate material under the impact zone leading to tensile tearing. This process is usually accompanied by substantial amounts of global dishing of the target. Thick, brittle targets tend to fail by plugging – a shear-dominated process in which a plug of material is separated from the surrounding target. Sharp-nosed projectiles cause failure by petalling in thin, ductile targets and plugging in thick, brittle targets. In all cases the amount of global deformation experienced by the targets is greatest at the ballistic limit and decreases with increasing impact velocity.


There are a number of factors affecting the penetration and perforation processes that are, at present, not fully understood. For example the role of clamping conditions in determining a target's ballistic limit is unclear. Also the mass of the projectile appears to affect the response of the target to impact, although the manner in which it does has not been determined. Uncertainties over the effect of parameters such as these are the main reasons why direct comparison between different studies can rarely be made.

Recently, some investigations have included information on the details of the failure zone. For example, where plugging has occurred measurements have been made of the plug dimensions and the shear zone width. These results have helped to explain some failure and penetration mechanisms and are also necessary for some analyses which require such data for their solution. However, such information is extremely patchy and shows no clear trend.


The majority of investigations have been concerned with the normal impact of flat plates with rigid projectiles. The number of studies involving oblique impact, projectile yaw or deformable projectiles are far fewer. It has been shown that obliquity does not significantly affect the ballistic limit of a metal plate provided the angle of obliquity is less than 30
[image: image72.wmf]o

. Greater angles than this increase the target's ballistic limit, unless the presence of projectile yaw causes a change in the failure mode of the target, in which case the increase in angle of obliquity may lower its ballistic limit. The occurrence of projectile deformation raises the ballistic limit of a target.


Other areas of interest have included the impact of multi-layered plates and the impact of tubes. The benefits of using multi-layered plates as opposed to monolithic plates are unclear, with the limited number of investigations reaching no firm conclusions. The investigations into the response of steel tubes to projectile impact indicate that they experience failure modes similar to those experienced by flat steel plates, with these failure modes also being dependent on the relative tube wall thickness, projectile nose shape and tube material. A similar dependence of ballistic limit on projectile mass was shown. The global response of the tube was, unlike the plates, non-axisymmetric, with the tube wall behaving in a stiffener manner than an equal thickness steel plate.


Although all the experimental studies have involved almost exclusively, small scale impact tests there has been a dearth of investigation into the applicability of scaling laws to allow the results of these studies to be applied to large scale situations. The possible presence of factors such as strain-rate effects and ductile – brittle transition zones suggests that scaling must be carried out with extreme caution and, until hard experimental evidence is provided to prove otherwise, this will continue to be the case.

7.2. Prediction of ballistic limit


The ability to predict a target's ballistic limit under a certain set of impact conditions has been the goal of impact engineers since the problems arising from projectile perforation were first identified. The use of empirical equations were the engineer's first tool, and they remain a very important one. Various studies have shown that, provided the impact conditions lie within the parameters stated for the formula to be used, an empirical formula is a quick and effective means of predicting a target's ballistic limit. A major drawback with them is that the small number of formulae available from non-military sources only cover a limited range of impact conditions.


There has been considerable attention paid to the development of analytical models over the past few years. When a projectile strikes a target with a velocity considerably greater than the target's ballistic limit the older analyses, such as those by Recht and Ipson [32], Thompson [90] and Zaid and Paul [94], which ignore global effects and assume a constant projectile velocity throughout the penetration process, are fairly accurate in predicting the velocity drop experienced by the projectile. If the ballistic limit of the target plate is known, the analysis of Recht and Ipson [32] successfully predicts the velocity drop at all impact velocities.


Analytical models that predict the ballistic limit of a structure are continually being developed in order to represent more accurately the phenomena associated with projectile impact. A number of models that are simple to apply but fairly crude in their representation of the penetration process are available. For example the models of Thompson [90] or Woodward [91] may be used to obtain a first approximation of the energy required to perforate a thin plate by ductile hole enlargement. Similarly an estimation of the energy required for failure by plugging can be obtained using Woodward's analysis [100]. These models, which are for conically-tipped projectiles, are quick and easy to use but are fairly conservative, tending to under-predict the ballistic limit by neglecting various energy absorbing mechanisms (e.g. global target response).


The use of multi-stage penetration models to analyse projectile penetration into a target was first attempted by Awerbuch [128]. Since then they have been improved by better representation of the various local phenomena, and also by the inclusion of global effects. Where global effects are likely to be dominant, the analyses of Shadbolt et al. [131] or Woodward [134], which model the global response of plate coupled with a fairly simple failure criterion at the point of loading, may be used to estimate the energy absorbing properties of the target. These latter models are more sophisticated in their representation of projectile impact than the relatively simple models of Thompson [90] and Woodward [91,100], but have the disadvantage of requiring computer facilities for their solution and, in most cases, some experimentally obtained data.


Recently plastic wave theory has been successfully applied to the problem of projectile penetration. This approach is suitable for relatively thick plates (relative to projectile diameter) when struck by flat faced projectiles. When account is taken of global deformation of the plate (bending or shear) this approach is seen to improve upon the simpler models in predicting the response of the plate, especially when the projectile impact velocity is very close to the ballistic limit of the target. Plastic wave theory is the most successful analytical method for predicting the profiles adopted by the plate during impact.


In order for any of the above models to be successfully applied to a given situation a certain amount of qualitative judgement is required by the user. Each analysis is only applicable for a given range of impact conditions and most presuppose the mode of failure. It is therefore necessary to select the most apt analysis depending on the predicted mode of failure, the type of projectile likely to be encountered (mass, diameter, nose-shape, deformability, angle of flight, etc.) and the type of target response likely to occur (localized, global, or a combination of the two). Choosing an unsuitable model may lead to gross errors in predicting a target's ballistic limit.


Another problem that is encountered when applying the various analyses to a given problem is the choice of material properties. The presence of factors such as strain-rate effects, strain-hardening, friction and lateral constraint indicate that a target's material properties may alter significantly during the penetration process, and if account is not taken of these effects then substantial errors may accrue. In addition, account will need to be taken of any anisotropy in the material properties.

7.3. Prediction of target response and impact loads


Various methods that predict the plate profile and maximum deflection of a target when struck by a non-perforating projectile have been described. Investigations into the impulsive loading of plates have shown that the response of thin plates to this type of loading is dominated by membrane effects. Analyses that are based on a bending-dominated mode of failure, such as that by Calder et al. [114] have been shown to be applicable only for small deflections. Beynet and Plunkett [11] provide an analysis, based on a membrane-dominated model, which accurately predicts the response of thin plates to projectile impact. A simpler method that may be used to predict the plate deflection (for thin plates) is that of Calder and Goldsmith [15] which assumes the form of the deformed plate profile but gives reasonable estimates of maximum deflection.


An estimate of the forces generated during the impact process can be readily obtained using the method described by Levy and Goldsmith [127]. Although their method, which reduces the projectile - target system to a number of lumped-parameters, is based on a very elementary one-dimensional analysis of the penetration and perforation processes involved, it is seen to give accurate predictions of the force and central plate deflection histories. It has the advantage of being much simpler to implement than other more detailed approaches and it is completely predictive for sub-ballistic limit impacts. Perforating impact situations require measured information from the perforated specimen.

7.4. Prediction of pipe response to impact


There has been very little attempt at analysing the response of tubes to projectile impact. Empirical relationships have been proposed by Stronge [85] and Neilson et al. [61] and these are suitable for predicting the minimum energy required for perforation of steel tubes when the impact conditions lie within the stated ranges. Analytical models that successfully predict target response have not yet been developed although the string-on-foundation analogy may be used to predict central deflections of the pipe wall under projectile impact [121,124]. Alternatively a quasi-static analysis (for example [53]) may be used to predict low velocity impact behaviour. Numerical solutions have been shown to predict target response reasonably accurately [152], although prediction of failure of the tube wall has not yet been achieved.

7.5. Response of concrete and steel – concrete composite structures to impact


Concrete is a material that is suitable for use for impact protection where weight and space are not limited. The ballistic limit and failure mechanisms of concrete structures are dependent on the amount and type of reinforcement. Concrete tends to be less sensitive to impact conditions (such as projectile nose-shape, impact velocity, projectile mass) than monolithic steel structures and hence can be used with greater confidence when the impact conditions are not known in advance. It has been shown that concrete can be used to clad steel structures in order to protect the steel from adverse impact conditions such as sharp-nosed, high velocity projectiles.


Predictions of the ballistic limit of concrete structures are predominantly empirical, with the NDRC formula [184] generally being regarded as the most acceptable.
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