1.4. Constitutive equations

In solving problems of the mechanics of solids, nine mechanical variables 

 can be taken as required functions. In fact, after defining the law of motion, all the kinematic fields of velocities, accelerations, strain rates, densities etc. can be calculated by the formulae mentioned in Section 1.2. On finding stress fields as functions of co-ordinates and time by the formulae adduced in Section 1.3, one can find, e.g., surface stresses at any point of the body and at any instant of deformation, as well as other stress characteristics.


We have three equations of motion (67) to determine 

 and 

. The above-mentioned equations do not suffice to solve them; the system is not closed. At least six more equations are wanted. The system of differential equations of the mechanics of continua is closed by constitutive equations relating the stress state to the strain state, which present a mathematical model of the material being deformed. The constitutive equations can be constructed on the basis of the experimental study of the mechanical properties of materials with the use of some general principles of mechanics and physics. The mathematical model of a medium should also be constructed with regard to the solubility of a closed system.


Formulating constitutive equations is a permanent problem, since the process of apprehending the properties of materials under deformation is infinite (it will last at least as long as the mechanics of continua will exist). In what follows we assume a number of statements concerning the constitutive equations. 


We assume that constitutive equations are functionals, for example, written in the form of differential equations. But at any fixed time they can be represented by the tensor functions as







(68)

and   

,





(69)

where 

 and 

 are the contravariant and covariant components of the stress deviator and the strain rate deviator, respectively; 

 and 

 are the first invariants of the stress tensor and the strain rate tensor, and 

 is temperature. The deviators have the form
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Among the arguments in Eqs. (68) and (69) there may be any characteristics of the stress and strain states, e.g., their time derivatives. Only those arguments are shown in Eqs. (68) and (69) which are necessary for our discussion. Six independent relations – five in Eq. (68) and one in Eq.(69) – close the system describing continuum motion. To close a system is known to be insufficient. It must possess a solution and, as a rule, the only one, otherwise the mathematical model will lack practical applicability. Therefore in this work it is stated (and it is justified in terms of thermodynamics) that 

1)  at any fixed instant,  the constitutive equations (functionals) turn into the tensor functions



, 

;

2) these functions are solvable with respect to 

 and 

, respectively,


;                                (72)

3) the functions have  bounded derivatives 


4) they express viscous properties of materials,


; and


(73)

5)   they describe irreversible plastic strains. Conditions (73) have been confirmed by practice. Side by side with other conditions, the above statements offer a unique existing solution.

1.5. Energy conservation equations

As a rule, constitutive equations depend on the temperature conditions of deformation. Temperature (the temperature field in more exact terms) 

 is yet another variable to be determined from certain conditions. The law of heat energy conservation is a condition of the kind, with the differential heat conduction equation following from it.


The law of energy conservation applies for the conservation of both thermal and mechanical energy. The mechanical energy conservation law is the matter of fundamental importance in this volume – it serves as a basis for the formulation of a variational principle, which plays a decisive part in solving the boundary value problem of the mechanics of solids.


The kinetic energy transformation theorem. The dynamic equations of continuum motion have an important consequence called the Kinetic Energy Transformation Theorem.


Assume that 

 is the vector of the infinitesimal displacement of a material particle of a solid. Scalar multiplication of the differential equation of motion (67) by the latter quantity and integration of the result in the body volume V give



.      (74)

After using the Gauss-Ostrogradski formula and the stress tensor symmetry condition, Eq. (74) can be represented in the form


,        (75)

i.e. the work of the external forces distributed over the surface and in the volume (the left side of the latter equation) is spent for deformation of the body and the increment of its kinetic energy 

, the statement being referred to as the Kinetic Energy Transformation Theorem. The theorem results from the equations of motion, and it presents mechanical energy balance equations. It is about energy, but it is not the law of energy conservation. The theorem can be treated as the law of energy conservation only when other kinds of energy in the deformation of the continuum can be neglected. In the general case the energy conservation law consists of two parts, namely, the mechanical energy conservation law (75) and the non-mechanical energy conservation law.


The energy conservation law. In the general case of continuum deformation, besides mechanical energy, other kinds of energy should be taken into account. The first law of thermodynamics (the energy conservation law) states that the work of surface- and volume-distributed external forces and the arrival of other kinds of energy from outside the body through the surface or bulk of the body are contributed to the increment of kinetic energy and the internal energy of the body. The First Law of Thermodynamics is a postulate confirmed by practice, and it has acquired significance as a physical law.


Thus, according to the above-mentioned statement, we can write that


,          (76)

where dQ is the supply of other, non-mechanical, kinds of energy to the body; dU is the internal body energy increment. If Eq. (75) is subtracted from Eq. (76), the non-mechanical energy conservation law can be formulated as



.                     (77)


The internal energy increment is represented by the integral



.                          (78)

The supply of other kinds of energy (thermal in this paper) through the surface can be presented as



.

In the formulae, u is specific internal energy (per unit mass), d/dt, is a substantial derivative, 

, is the vector of density (per unit surface) of the energy (heat) flow and 

 is the external unit normal vector. If the Gauss-Ostrogradski formula is used in the latter expression, it acquires the form
                                                           

.                                           (79)

On substituting Eqs (78) and (79) into Eq. (77), we obtain



.
The latter is valid for any part of the body volume, hence the differential equation of energy 


.                       (80)


Alongside mechanical energy, we take into account only heat energy. There are different laws defining the heat flow density vector 

, e.g., Fourier’s law



,

where 

 is the temperature field in the body under deformation and 

 is the heat conductivity coefficient. In view of the fact that 

, 

                                                  

.                                           (81)

If it is assumed that internal energy is no more than heat energy accumulated, then



,
where c is mass heat capacity, i.e. the quantity of heat necessary to raise unit mass temperature by one degree. Hence



.                    (82)

In the circumstances of developed plastic flow, elastic (reversible) strains can usually be neglected, and 

 can be considered as characterizing the dissipation of mechanical energy into heat energy. Thus, in the particular case, Eq. (80) turns into the well-known differential heat conduction equation



.                  (83)

Adding Eq. (83) to the complete system of differential equations of continua makes it closed again. (The introduction of the required variable 

 is, of course, accompanied by adding Eq. (83)).

1.6. The boundary value problem

The boundary value problem of the mechanics of solids consists of space and time boundary conditions and the corresponding differential equations with respect to the mechanical variables – non-stationary fields describing flow kinematics, stress, temperature and the process of failure. Of course, the boundary value problem is formulated in order to be solved. The solution technique – space and time integration – will be discussed later.


The foregoing material offers a satisfactory formulation of the boundary value problem of the mechanics of solids, particularly, the mechanics of impact loading in perforation, the mechanics of plastic metal forming, machining and other processes. Boundary value problem formulation as presented in this section and in Section 1.4 differs from the conventional classical formulation. In later chapters this updated formulation is followed by a new technique for calculating the stress-strain state and fracture. Hence the words new theory in the title of the book.


The differential equations of the boundary value problem. Our task is to integrate the differential equations of body motion (67), the mechanical properties being expressed by the tensor functions (68) and (69), see postulates (72) and (73). After transforming Eq. (67) by means of Eqs. (68) and (69), we obtain



.                     (84)

It is obvious that, with given mass forces 

, three equations (84) relate three unknown functions (48), 

 being expressed in terms of the law of motion by Eqs. (51), (54), (57) and (71). In the general case, the system (84) cannot be integrated (uniquely solved) in order to define the law of motion (48), since, for example, some space boundary conditions may be given in terms of stresses. Consequently, the problem of determining flow kinematics is related to the problem of determining the stress state. Thus, the system (84) must be supplemented with the equations



                 (85)

derived from Eq. (57) after substituting Eqs (71) and (72) in them. Six equations (85) relate six stress tensor components.


Deformation of solids, by impact in perforation problems or by thermomechanical working in problems on processing, is accompanied by fracture. A mathematical model (theory) of fracture is used in this book, and it will be discussed in detail in a later chapter. Here, we only state that the process of fracture is represented in a model way by a scalar quantity 

 characterising the amount of material damage due to submicro- and micro-discontinuities, as is commonly done in similar theories of fracture, e.g. fatigue. This quantity is assumed to obey the axiomatics of the continuum, i.e., to be fairly evenly distributed in the body volume. It is normalised so that 

 for an undamaged material, and that 

 by the time of macro-defect formation. The time evolution of 

 is shown by a certain kinematic relation, which is included in the system of differential equations of the boundary value problem.


Thus, the differential equations (84) and (85), the heat conduction equation (83) and the kinetic relation for determining damage 

<1 offer a closed differential system of the mechanics of solids.


Space Boundary Conditions. Assume that a body to be deformed has a volume V and that it is bounded by the surface S. In perforation problems a target (or a target and a projectile) can be taken as a body to be deformed, the external action being specified on its surface S. Note that in all problems space boundary conditions (external circumstances) must be specified at every point of S bounding the volume V. This statement may be considered satisfactory if there is no projectile deformation in impact, and if the researcher knows how to describe the target response to the projectile impact. If there is projectile deformation and if the researcher wants to know projectile strains, stresses and fracture as well, then the volume V of “the body being deformed” should include both the target volume and the projectile volume. At the same time it is imperative for the researcher to specify the conditions of interaction between the target and the projectile at every contact point. Of course, as before, conditions must be specified on the surface S closing the integral volume of the target and the projectile.


In the fairly general form the boundary conditions on the surface S (at every point and at every instant within the deformation interval [

]) can be specified as






(86)

where 

 and 

are known functions (known functions are hereinafter marked off by an asterisk)
. Note that these functions are established experimentally, but they need to be formulated mathematically, and formulated correctly. They play the same role as the constitutive equations for the continuum – a medium under deformation, see Section 1.4. Note that amongst the arguments of the functions 

 there can be other mechanical 
variables symbolised by dots in Eq. (86). Only those variables are adduced that are required for some statements, e.g. the following one: the correct formulation of the space boundary conditions (to ensure the existence and uniqueness of the solution) must manifest itself in the fact that the functions 

 in Eq. (86) somehow approximating experimental data should have inverse functions with respect to the first arguments, or these functions must not be decreasing, 

.


The so-called classical formulation of space boundary conditions commonly used in the literature states that surface stresses are given on one part of the body surface 

, velocities being given on the other part 

. This can be mathematically expressed as 



.   (86 a)

It is obvious that Eq. (86 a) is a particular case of Eq. (86).


In the mechanics of metal forming and machining, one typical formulation of space boundary conditions is commonly used, which is predetermined by the effect of friction between the tool and the piece to be deformed. According to this formulation, the body is bounded by the external surface S consisting of the parts 

, 

 and 

. The space boundary conditions are represented on them as follows:



   




.          (86 b)

Here, 

 is the tool sliding velocity vector; 

, 

 and 

 are corresponding vector components normal to the surface S; 

 is the known law of friction. The law of friction can be the functional of particle motion over the surface 

, but, at a fixed instant t, it must be represented by a known function soluble with respect to 

 

, and it must satisfy the condition 

. It is obvious that the boundary conditions presented in Eq. (86 b) are a particular case of those given by Eq. (86).


Why is a more general formulation of space boundary conditions than that given by Eqs (86 a) or (86 b) required? In perforation problems aero- and hydrodynamic effects (resistance) seem to play an important part when bodies collide. This can be taken into account by Eq. (86).


Initial conditions. Besides the above-mentioned space boundary conditions, initial (time boundary) conditions are required for solving specific problems of the mechanics of solids. The term initial conditions means the distribution of required mechanical variables in volume V at the instant 

 – the beginning of loading in the time length [

, 

]. The boundary value problem formulated here can be solved up to the instant 

, until a macro-defect occurs in the body. After a new surface (macro-defect boundary) appears, another boundary value problem needs to be formulated, i.e., additional space boundary conditions must be specified on the sides of the macro-defect. This will be discussed in detail in what follows.


Thus, for every material particle M belonging to the volume V, whose Eulerian co-ordinates are known, initial conditions (at 

) must be specified – the values of thermo-mechanical variables at the beginning of the period [

, 

]. Thermo-mechanical variables are temperature fields, kinematic fields, stress fields and fields 

 describing material damage.



.
(87)

Here on the right, marked off by a zero, known co-ordinate functions are given.


To complete the formulation of the general boundary value problem, we now turn to the mathematical description of fracture with the use of the above-mentioned variable 

, and this is done in the next chapter.

2. A MATHEMATICAL MODEL OF METAL FRACTURE (DISCONTINUITY)


As was stated above, many processes of deformation, including impact, occur with fracture; an adequate description of the process of fracture is a challenge. Indeed, the process of deformation has a good mechanical and mathematical description based on the classical mechanics of solids, whereas the process of fracture has not been adequately described yet. In an attempt to resolve this problem, this chapter presents a model (theory) of fracture in terms of the mechanics of continua. The model has been developed by V. L. Kolmogorov and his helpers.


The model is phenomenological, and it generalises the available experimental data on the macro-fracture of metals under developed elastic-plastic strains. The chapter gives a brief account of the principal features of the theory, which is discussed in more detail in [3 – 10] written in Russian and [11 – 14] written in English.


The model of fracture, as was mentioned above, is based on the concept of gradual accumulation of damage in metal as deformation develops. Micro-damage can be arbitrarily represented by the function 

, which is hereinafter referred to as damage. This quantity is supposed to obey the axiomatics of the mechanics of solids, i.e., it shows a fairly even distribution in the body volume and a smooth deformation history. It is normed so that 

=0 for undamaged material and 

=1 when a macro-defect (that visible to the naked eye) appears. The time evolution of 

 can be described by some kinetic relationships included in the differential system of the boundary value problem discussed in Section 1.6. If the function 

 reaches unity at some point in the body under deformation, it means that a discontinuity (macro-fracture) occurs at this point of time and space, and that the boundary value problem needs a reformulation, because a new surface with its boundary conditions has appeared. The fracture theory offers conditions predetermining the orientation and extension of the fracture surface, as well as the unloading pulse magnitude. To some extent, the theory takes into account all the known phenomena accompanying the fracture of solids – the effect of the stress state on fracture, the non-monotonic character of the process, some reversibility of damage accumulation (i.e. micro-damage healing), acoustic emission etc.

2.1. A model of metal fracture in developed plastic deformation

It is generally recognized in the Physics of Metals that the plastic deformation of metals is from the very start accompanied by the growth of micro-discontinuities (damage) both in number and extension [15]. On this basis, a simple description of material particle damage by a scalar value (denoted here by 

(t), as a function of time, each particle having its own function 

(t)) referred to as damage was proposed in fracture mechanics, see, e.g., [16 – 18]. This parameter is normalised: 

 at the instant of macro-fracture onset and 

 at the initial instant. The intermediate values of 

 indicate some extent of damage by micro-discontinuities. The problem of fracture model creation discussed in this chapter involves the macro-experiment-based formulation of the kinetic differential equation



                                          (88)

describing the evolution of micro-discontinuities towards macro-failure. Equation (88) is to be integrated for the determination of 

 in order to answer the question whether a material particle will suffer macro-fracture or what will be the level of micro-damage. The integration is effected for a specific material particle.


The phenomenological model of fracture as in Eq. (88) is developed according to the following scheme: proposing a version of the model, experimental verification, correction or a new formulation of the model, and then another verification etc. In what follows we show one of the latest modifications of the model, a simple one, chosen out of numerous previous iterations.


It is supposed hereinafter that, for a specific process in the plastic deformation of metals, its boundary value problem has been solved. It implies that it is not only the paths of material particles that are determined at every instant in the body volume, but also tensor fields describing the stress-strain state and other parameters, which will be mentioned below.


The predicted particle motion path should be divided into sections of monotonic deformation. Deformation is monotonic in a section if all the components of the strain rate tensor in the Lagrangian system of co-ordinates do not change their sign within this section. The boundary between the adjacent sections of monotonic deformation is the point in time (or the point on the particle motion path) when at least one component of the strain rate tensor becomes zero when changing its sign. 


The division of the path of a material particle under plastic deformation into monotonic deformation stages is conditioned by physical factors. The fact is that the mechanism of damage accumulation in monotonic deformation differs from that in non-monotonic one (the latter has at least two stages of monotonic deformation and is characterized by a change in the direction of the deformation increment on the boundaries between the sections of monotonic deformation.) This phenomenon can be explained, e.g., as follows. In a section of monotonic deformation developing in one direction, dislocations of one certain sign appear in the metal. As the deformation develops, the dislocations grow in number, and aggregates of dislocations cause pores and micro-cracks. The change in the direction of deformation occurring at the boundary between the sections of monotonic deformation leads to the appearance of dislocations of the other sign at the beginning of the next section. They interact with the dislocations that have already appeared in the previous section of monotonic deformation. This results in the partial annihilation of the dislocations, and the process of fracture slows down.

Equation (88) for a separate section of monotonic deformation was proposed in [3] in the form



,      

  (89)

where 

 is shear strain rate intensity; 

 is the second invariant of the strain rate deviator; 

 and 

 are the independent basic nondimensional dimensionless invariants of the stress tensor. All this is a result of solving the boundary value problem written for a specific material particle on its path at time t; 

 is metal plasticity as a function of stress characteristics. This function is the constitutive equation of the theory of fracture, and it is established experimentally. Metal plasticity 

 is the ability of a metal to deform without fracture (macroscopic discontinuity) under monotonic deformation at constant 

, 

 and H. (Plasticity here must not be confused with the ability to accumulate permanent strains.) The measure of plasticity is the amount of shear strain, which is calculated by the formula 




,




(90)

the integral being taken for a specific material particle. Thus, 

 at the instant of macro-fracture when 

.


As is known, temperature can be amongst the arguments of the function 

. However, the above-mentioned set of arguments, which characterise the stress state alone, would suffice for cold deformation. The stress state must be represented by three basic (independent) invariants of the stress tensor, which always reduce to two independent nondimensional invariants. Of all the possible combinations of 

 and 

, it is expedient to choose the most essential in the function 

 and conventional. The works of Karman and Bridgman [21, 22] written in the first half of the 20th century showed an essential effect of hydrostatic pressure p, or the mean normal stress (the first invariant of the stress tensor) 

= – p, on plasticity. The following invariants are often used in the theory of plasticity: 

 ( the intensity of tangential stresses; 

 ( the second invariant of the stress deviator; 

 ( the nondimensional index of the stress deviator form, or the Lode parameter. It can be assumed on this basis that



,






      (91)

                      and   

,
   (92)

where, as is known, 

; 

 

are principal normal stresses.


When a material particle subjected to plastic working deforms only monotonically, damage can be calculated at any stage of forming (at time t) by Eq. (89) as
((t) =



 EMBED Equation.2  
.

(93)


When a material particle deforms non-monotonically (this is seen from the solution to the boundary value problem), damage at time t is calculated differently, namely, as



,



   (94)

where n is the number of sections of monotonic deformation the particle has suffered by time t; 

 is a quantity calculated for the i-th section of monotonic deformation (i=1, ..., n) by Eq. (93); 

 is an exponent taken average for the conditions corresponding to the i-th section of monotonic deformation. (It turns out that 



 EMBED Equation.2  
(1, and this formally reflects the effect of damage development retardation with the change in the deformation direction.) It has been found that 

. This quantity is the second (after 

) constitutive equation in the theory of fracture presented here.

� The notation � EMBED Equation.2  ��� means “at each point M belonging to the surface S”.
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