PART II. PREDICTION OF IMPACT DEFORMATION AND FRACTURE 

In Part II a new method for predicting the stress-strain state and fracture in impact and any other dynamic interaction is proposed for practical application. The method is applicable to all the problems solved experimentally or analytically in works discussed in Part I. However, it can be effectively extended to other problems, particularly to the analysis of technological processes, e.g., metal forming and machining. It seems to be too pretentious to call this method new, however, only this method has enabled one to explain and predict superdeep penetration, which has been recently discovered experimentally. No other theory has been able to give a satisfactory explanation.


The description of the method for predicting impact deformation and fracture requires an introduction to remind experienced readers of the principles and to familiarize beginning engineers and students with some complicated notions forming the basis of the theory to beginning engineers and students. Chapter 2 deals with a new variable, which is introduced in addition to the classical variables (stresses, strains etc.) in order to describe fracture. Chapter 3 gives an account of the method proper. The last chapter presents examples illustrating some applications of the method. They seem to be discussed in detail thus enabling one to master the method.

NOTATION



 - vector



 - basis vector



 - relative basis vector



 - time constant Cartesian basis of the system of reference



 - oblique projections of the vector 

 on the directions of the vectors 

 or contravariant components of the vector 




 - oblique projections of the vector 

 on the directions of the relative basis vectors 

 or covariant components of the vector 


i, j, k, l = 1, 2, 3 - free indices



 - basis transformation matrices



 - metric tensor component matrices (covariant, contravariant and mixed components respectively)



 - second-rank component matrices



 - the symmetric and asymmetric matrices of the tensor components



 - Cartesian co-ordinates



 - Lagrangian co-ordinates



 - Cristoffel symbol



 - either covariant derivative operator or Laplace operator (in the context)



 - the components of the vector of a material particle travelling relative to the fixed Cartesian co-ordinate system



 - material particle velocity and acceleration vectors, respectively





 EMBED Equation.2  
 - strain rate tensor components



 - strain rate deviator components



 - relative rate of volume change

M, 

m - body and element (or particle) mass, respectively

V, 

V - body volume and element volume, respectively



 - mass density

S and S

 S

 S

 - body surface and its respective parts



 - vector divergence operator



 - matrix determinant



 - scalar field gradient operator



 - mass force vector and surface stress vector, respectively



 - normal and tangential components of surface stress, respectively





 EMBED Equation.2  
 - stress tensor components



 - stress deviator components





 EMBED Equation.2  
 - mean normal stress or hydrostatic pressure with the negative sign



 - temperature



 - internal, kinetic and heat energies, respectively



 - specific internal and heat energies, respectively



 - heat conductivity and heat capacity coefficients, respectively



 - symbols denoting “for any element”, “belonging to some multitude” and “united multitudes”, respectively



 - time



 - slip vector and unit slip vector, respectively





 EMBED Equation.2  
 - material damage, its two critical values and its change under heat treatment, respectively



 - the number of monotonic deformation portions



 

 - strain rate intensity and shear strain rate intensity, respectively



 

 - amount of strain and amount of shear strain, respectively





 EMBED Equation.2  
 - constitutive functions of the theory of fracture



 - the nondimensional index of the stress state 



 - tangential stress intensity



 - the second index of the stress state or the Lode parameter



 - yield stress (or strength) in pure shear and in uniaxial tension, respectively



 - angular and linear specimen dimensions in plasticity tests



 - principal normal stresses



 - tangential and normal stresses on the area of maximum tangential stress



 - the functionals of the principle of virtual velocities and stresses and the principle for the temperature part of the problem, respectively



 - Young’s modulus, the modulus of shear and Poisson’s coefficient

1. INTRODUCTION

The problems considered in this volume deal with large deformations. Metals, and solids in general, have very complicated physical and mechanical properties which vary during deformation which, of course, must be taken into consideration in calculations, i.e., it is important to know what happens to each particle of the body during deformation, for the mathematical model to be appropriate to experimentally observed phenomena. Moreover, the mechanics of continua has well-formulated laws to deal with material particles. Therefore it is a matter of great importance to decide what co-ordinate system should be chosen and what variables should be used to describe motion.

 (Hereinafter, the term “particle” stands for a portion of a solid, as small as is wished, which has only an imaginary boundary with the solid. This part can be infinitesimal. However, mechanical properties revealed in laboratory macro-experiments are attributed to it.)          

There are only two equivalent descriptions of motion: Eulerian and Lagrangian. (This sounds rather trite for a mechanist, though trite only in theory, not in practice, therefore we need to discuss these notions once again.) It has been historically established that, for almost all practical applications, the Eulerian description is preferable. Not that it is more advantageous, but it is a tradition dating back to the origin of the mechanics of continua. This branch of science was formulated in the 18th century to meet the requirements of hydraulics, which has served as a basis for modern hydrodynamics, and structural mechanics, which further developed into the theory of elasticity and the theory of plasticity. Liquids, as a rule, are treated as materials without memory, and therefore it is natural to describe their motion at spatial points with fixed co-ordinates. In the course of time, a spatial point is “visited” by various material particles, but their mechanical properties depend only on the state of the particle at this spatial point. Hence the appropriate description of motion is the Eulerian one. The Eulerian description is used in structural mechanics, in the theory of elasticity and in other sciences dealing with small displacements and strains. Then the stress-strain state is referred to the initial position of the body and all its particles, whose co-ordinates are, again, Eulerian.

In problems on large deformations of solids, when materials memorize the deformation history, the conventional Eulerian approach does not seem to be appropriate. We believe that problems of the kind should be treated in terms of Lagrangian variables, i.e., in the convected co-ordinate system. In this case each material particle has constant co-ordinates during deformation and, effectively, each particle is named or labelled. The system can be constructed as follows. Consider a body at an initial instant in the Cartesian co-ordinate system and bind this system to the body being deformed. (We do this in experiments when we apply a co-ordinate grid drawn on the body.) This co-ordinate grid will distort in the course of deformation and turn into an oblique-angled curvilinear grid – a so-called convected co-ordinate system.

In general, engineers, even those engaged in research work, have a poor command of Lagrangian co-ordinates. This book presents the fundamental tenets of the theory of convected co-ordinates, assuming that the reader has at least a general notion of the mechanics of solids, at least within the context of [1, 2, 9].

1.1. Elements of the tensor calculus in terms of the curvilinear oblique-angled convected

      co-ordinate system
Vectors and Their Contravariant and Covariant Components. Suppose that at an instant of time t, at a material particle A of the body being deformed (Fig.1a), a particular material quantity (or its state – acceleration, velocity etc.) is represented by an 

-vector. The vector exists physically, and it does not depend on the co-ordinate system chosen (not shown in Fig.1 a). Any vector is an invariant, and this is a postulate of the vector (tensor) calculus.
The vector can be represented in co-ordinate form (see Fig.1 b) as follows:


,




(1)

where 

 

 are the vectors of the basis; 

 are oblique projections of the 

-vector on the directions of the basis vectors, which are referred to as contravariant components of the 

-vector. In three-dimensional space, any three linearly independent vectors can be taken as a basis. Hereinafter: 1) the index i takes three values in turn (1, 2, 3) according to the number of the basis vectors, and it is referred to as the free index; 2) two indices i written as a superscript and a subscript (see the end of Eq. (1)) denote summation. Basis vectors can be assumed to coincide with the tangents to the co-ordinate lines, particularly, of the convected co-ordinate system. Thus, any vector 

 can be represented by its oblique projections as


.




(2a)

The prime here denotes matrix transposition.

It is important for the further description to introduce the so-called “relative basis” (to the basis shown in Fig.1b) defined by the formulae



,




(3)

where i, j, k are free indices related through the cyclic permutation of the numbers 1, 2, 3 (see Fig.1c); 

 is the volume of the parallelepiped constructed on the vectors of the basis 

 (note that the free index in the left side of Eq. (3) is a superscript, and that it denotes the relative basis). The same 

-vector (Fig.1a) can be represented in terms of the relative basis as



,



(4)

where 

 are the oblique projections of the  

-vector on the directions of the vectors of the relative basis. (They are referred to as the covariant components of the 

-vector.)
Note that the free index here is made a subscript to avoid the violation of the rule of summation over the recurrent superscripts and subscripts, see the end of Eq. (4). Thus, the 

-vector of the relative basis is presented by a matrix different from the matrix (2a), namely,


.




(2b)

In general, the matrix of the components of one and the same vector changes as the basis changes, i.e., it is not invariant. 

In the Cartesian co-ordinate system the contravariant and covariant vector components coincide, therefore indices of the same type are used to denote vector components, basis vectors etc., namely, subscripts.

It is useful to study one of the features of covariant components. Work out the scalar product of the 

-vector as given by Eq. (4) and each vector of the basis 

 in turn, in view of Eq. (3),



similarly, 

, and 

. Thus, covariant components are orthogonal projections of a vector on the directions of the basis vector. (Recall that contravariant components are oblique projections of a vector on the directions of the basis vector.)



.






(5)

An example follows in Fig.2.

Vector Components and Changes in the Basis. Let us discuss how vector components change as the basis changes. Assume that two bases are given – initial (former) and transformed (new), 

 and 

. Each vector of the basis 

 can be represented as in Eq. (1),


, 






6)

where 

 are the elements of the matrix composed of the oblique projections of the vectors 

 (of the transformed basis) on the directions of the initial basis 

. Note that, if 

 and 

 are Cartesian bases, the values of 

 are equal to the cosines of the angles between the corresponding vectors of the transformed and initial bases.

Similarly, the vectors of the initial basis can be represented in the form of decomposition into the directions of the transformed basis as



.    

                               (7)

The coefficients 

 and 

 are correlated. If Eq. (7) is substituted into Eq.(6), we obtain



,

though it is valid only if



     


                   (8)

By substituting Eq. (7) into Eq. (1), we obtain a formula for the transformation of the contravariant components of the 

-vector when the basis changes. Indeed,


; 

.                                    (9)

Similarly, the formula for the inverse transformation (from the new basis 

 into the former one 

) of the 

-vector contravariant components can be obtained,


.         

                    (10)

Now turn to the transformation of the covariant components of the 

-vector caused by the change of the basis. For this purpose, Eq. (7) should be substituted into Eq. (5), thus,



or   

.                                    (11)

Similarly, the formula for direct transformation (that is, from the former basis into the new one) can be written as



.                                    (12)

Eqs (9) to (12) are of fundamental importance in the definition of the concept of “the tensor”.

Scalar Multiplication of Vectors. It follows from Eqs (1) and (4) that the scalar product of the two vectors – 

 and 

 –  can be represented as


.

Denote a set of scalar coefficients by


.                 (13)

Then, with regard to Eq. (3), it follows from the latter formula that



   

(14)

The set of coefficients (14) is the Kronecker delta. Thus, the scalar product of the 

- and 

-vectors can be written as 



.


(15)

It is obvious that the contravariant and the covariant vector components are related by



.




(16)

The inverse relation is



.



(17)

Eq. (16) can be treated a set of linear algebraic equations with respect to 

. The solution of this set gives



,




(18)

where g is the determinant formed of the coefficients of the set (16); 

 is the algebraic supplement to the element 

 of the determinant g. By comparing Eq. (17) with Eq. (18), we find that







(19)

This formula enables one to define the components 

 by the components 

.

The tensor. The tensor is a physical or geometrical object defined by a set of numbers



, which, as the co-ordinate system changes, is transformed according to the formula



,

                   (20)

where 

 are dummy indices. The tensor rank is equal to the sum of the superscripts and subscripts. Compare Eq. (20) with Eqs. (9) to (12). The vector proves to be the tensor, though the first-rank one, whilst the scalar is considered to be the zero-rank tensor.

The sets of numbers defining tensors differ in their structure. Thus, 

 are the contravariant components of the second-rank tensor and 

 are the covariant components of the second-rank tensor; 

 and 

 are mixed components of the second-rank tensor. The dot denotes the sequence of indices. For example, in 

 the index j should be viewed as the second (the column number when the components of this tensor are written in the matrix form (3(3)).

There is yet another definition of the tensor, which is sometimes convenient for tensor recognition. Let 

 be the components of independent arbitrary vectors; if, by means of the quantities 

, the scalar 

                                                    

,                                                          (21)

can be formed, then these quantities are tensor components.
Tensors are invariant objects. Tensor components depend on the co-ordinate system chosen, and they are not invariant quantities.

The Metric Tensor. Let us return to the quantities defined by Eq. (13). They are used to set up the scalar product of arbitrary vectors (15). It follows from Eq. (21) that the quantities g are tensor components. The quantities 

 are the covariant components of the tensor which is referred to as metric. By definition (see Eq.(13)), it is a symmetric tensor 

. Similarly, the matrices 

 and 

 are symmetric. Incidentally, a tensor is referred to as antisymmetric if the equality 

 is valid for its components.

Why is a tensor referred to as metric? Consider a small vector 

 connecting two points 

 and 

. For example, it can be assumed that 

, as in Fig.1c. Then



,

where 

 are oblique co-ordinates of point A and the increments of these co-ordinates, respectively. The modulus of this vector is then the distance between points A and B; thus,


. 

(22)

Similarly, by representing the vector 

 differently, we can obtain



. 


(23)

The set of coefficients 

 defines the spatial metrics, as it can help to find the distance between two close points when their Lagrangian co-ordinates are known.

Algebraic Operations with Tensors. The algebraic operations with tensors (for example, second-rank ones) are as follows.

Permutation of indices. When permuting superscripts at 

, we can obtain a new tensor possessing the component matrix 

 transposed with respect to the matrix 

. If a tensor is symmetric, index permutation reduces to the identical transformation of the original tensor.

Addition. Addition is performed with tensors of the same rank and matrices with components of the same name (covariant, contravariant and mixed). To add several tensors, it would suffice to add their components of the same name.

Symmetrization and alternation. An arbitrary tensor can be decomposed into its symmetric and anti-symmetric parts, and its matrices can be treated as follows:



.
     (24)

The forming of a symmetric tensor with the matrix 

 is referred to as symmetrization, and the forming of an anti-symmetric tensor with the matrix 

 is referred to as alternation.

Multiplication. Multiplication is performed with tensors of any rank and structure. When a tensor is multiplied by a scalar, each tensor component is multiplied by the scalar. Thus, multiplication by the scalar 1/2 is used in Eq. (24).

Convolution. Convolution is performed only with tensors represented by mixed components. To perform convolution, it would suffice to equate one of the contravariant indices to one of the covariant ones of the original set of tensor components and then to make summation over the same index. As a result, the tensor rank is decreased by two units.

The lowering and raising of indices. The operation of index lowering or raising is performed by the multiplication of a tensor by the metric tensor and subsequent convolution over the pair of indices as follows:





        
(25)

Tensor Analysis. The mechanics of continua deals with tensor fields. To deal with a tensor field means to have a tensor defined at every point of physical space, the tensor being able to vary both from point to point and with time. In other words, every tensor component is a function of spatial co-ordinates and time. At any fixed instant, at every separate spatial point, the above-mentioned operations are performed with tensors.

Assume that the spatial location of a material point is uniquely and continuously defined by a set of parameters 

 (i = 1, 2, 3) of the arbitrary nature. These parameters can be viewed as curvilinear convected – Lagrangian co-ordinates. The geometric locus where one of the point co-ordinates is variable and the other two are constant is referred to as the co-ordinate line. The geometric locus where two co-ordinates are variable and one remains constant is called the co-ordinate surface.

The radius-vector of an arbitrary material point is the function of the co-ordinates



.




(26)

Let us construct a basis at every spatial point. To do this, we differentiate Eq. (26) partially with respect to 

. This results in three vectors directed at point 

 along the tangents to the co-ordinate lines, the tangents being assumed to be the basis 

. Thus,



.

 


    (27)

Now, turn to the vector component transformation formulae and derive them proceeding from other considerations. Let the co-ordinate system undergo one-to-one point transformation from the current (so-called former) 

 to the new one 

 and vice versa,


 .

       (28)

Then, proceeding from Eq. (27), we can write that


.
     (29)

On comparing Eqs. (29) and (6), we obtain



.




(30)

Similarly, coefficients of inverse transformation can be obtained,


.



(31)

Note that it follows from Eqs. (26) and (27) that






(32)

and that


.


(33)

We calculate the absolute differential of the vector field (the first-rank tensor field). Let the vector be represented as



.

Bearing in mind that the vectors of 

 are variable in space (as distinct from the situation with the Cartesian co-ordinates), we obtain



.

Multiply the left-hand and right-hand sides of the latter equality by the vectors of the relative basis. Proceeding from the fact that




where 

 are the second-kind Cristoffel symbols, one can write the contravariant components of the absolute differential of the 

-vector field as


.



(34)

Similarly, the covariant components of the absolute differential of the 

-vector field can be calculated as

                              

.
                           

      (35)

Note that the absolute differential of a higher-rank tensor field 

 is defined by the formula



.   (36)

The absolute tensor field differential involves two terms. The first term (

) is tensor component variation due to the inherent properties of the tensor. The second item (the rest) is tensor component variation due to basis variation from one spatial point to another.

The Cristoffel symbols are expressed in terms of metric tensor components as


.

(37)

Note that the Cristoffel symbols are not tensor components. This is obvious from the fact that in the Cartesian co-ordinate system (where the basis is constant), at the same spatial point of the same field, they are zero, whereas in the curvilinear system they are non-zero.

The absolute differential of the field of the second-rank tensor 

 has the form 



.

(38)

The absolute differential of the metric tensor field is zero (Ricci’s theorem), 


.

(39)

The latter is obvious when the values of 

 and 

 from Eq. (37) are substituted into Eq. (39) and the indices are changed on account of the metric tensor symmetry and Eq. (14).

Tensor components are functions of the field point co-ordinates, therefore it can be written in Eqs. (34), (35)  and (36) that


.

In consequence, the formulae acquire the forms




The parenthesized expressions in the right-hand side of the latter formulae are referred to as the covariant derivative of the corresponding components of the 

-vector and the tensor components 

, respectively. Thus, the covariant derivative of the contravariant components of the vector field is the quantity



,
   

(40)

which is a set of mixed constituents of the second-rank tensor; the covariant derivative of the covariant components is a set of covariant components of the second-rank tensor,



;


(41)

the covariant derivative of mixed, e.g. third-rank, tensor components is a set of the fourth-rank tensor components,


 .
(42)

The rank of the covariant tensor derivative is higher by one than that of the tensor to be differentiated.

Some properties of covariant derivatives can be useful in further analyses. The derivative of the sum of tensors is equal to the sum of the derivatives. The product differentiation rule, which is well-known in mathematical analysis, remains valid for covariant differentiation. In repeated covariant differentiation, the result depends on the sequence of the operations of differentiation.

Consider some differential operators in the convected (curvilinear and oblique) co-ordinate system. The covariant derivative of the zero-rank tensor (scalar) 







(43)

is a vector – scalar field gradient with its components. The covariant derivative of the contravariant components of the first-rank tensor (vector) gives mixed components of the second-rank tensor (40). The linear invariant composed of the second-rank tensor components is



;

(44)

it is referred to as the divergence of the 

-vector field. The covariant derivative of the covariant components of the first-rank tensor is expressed by Eq. (41).The alternation of the second-rank tensor components gives the expression



,

which is referred to as the vortex (or rotor) of the 

-vector field.

Turn to the Gauss-Ostrogradski formula



,



(45)

where S and V are, respectively, the surface and volume of the body under deformation; 

 is the unit vector externally normal to S; 

 is a vector field of any nature, but continuous and differentiable. Note that Eq. (45) has an invariant representation. In this connection, the Gauss-Ostrogradski formula has the following form in the convected co-ordinate system:



.


(46)

1.2. The Lagrangian description of continuum motion. Kinematics.

Let us now speak in terms of the mechanics of continua. The mechanical variables involved in the laws of the mechanics of continua are tensors (invariants). The laws themselves, due to their physical nature, are also invariant to the co-ordinates chosen. Thus, the Lagrangian representation of continuum motion will consist only in writing formulae and equations implying the use of convected co-ordinates. We will write these equations in Lagrangian co-ordinates supposing that the reader knows them written in Cartesian co-ordinates.

The Law of Motion. (It should not be confused with the differential equation of motion expressing Newton’s Second Law.) Motion is defined with respect to a fixed co-ordinate system of reference. Suppose that a fixed (e.g., Cartesian) co-ordinate system 

 is taken as system of reference. The particle moves relative to the reference system, consequently, its co-ordinates vary with time t according to some functions,



.                                  (47)

The functions presented by Eq. (47) express the particle motion path whose equations are represented in the parametric form. 
        A solid consists of an aggregate of material particles, and it is important to individualize them. This can be attained, for example, by specifying their co-ordinates in the system of reference at the initial instant as 

. Then Eq. (47) can be represented in the form


.                 (48)

The paths of all the material particles 

, constituting the solid of volume V are referred to as the law of motion. The variables 

 and 

 are referred to as Lagrangian variables. The curves described by Eq. (48) with 

 for all the material particles 

 form a material curvilinear co-ordinate grid moving and deforming together with the body, the grid being referred to as the convected co-ordinate system, see Fig.3. The main task is to determine the functions (48), i.e., the mechanical variables describing the body forming under loading.

We now write Eq. (48) in a slightly different form as


,                 (49)

where 

 is particle displacement with the initial co-ordinates 

 in the fixed Cartesian co-ordinate system. Note that 

. It is obvious from physical considerations that there is a one-to-one correspondence between 

 and 

 at a fixed instant, i.e., the formulae from Eq. (48) must be soluble with respect to


,


(50)

and this implies that the Jacobian (determinant) is


.

Consequently, judging by the contents of 
[image: image1.wmf]...

 in this expression, the derivatives are sure to exist. It is thus assumed that the functions (48) must be continuous and differentiable with respect to all the arguments.

Velocity and Acceleration. Recall the notions of velocity and acceleration by relating them to the Lagrangian description of motion. They are calculated with respect to the system of reference at fixed 

, i.e., for specific material particles. By definition, the velocity vector is



,


(51)

where 

 is the radius-vector of the particle under study, i.e., the vector connecting the origin of co-ordinates with a material particle; 

 is the basis of the system of reference, which is time-constant, i.e. fixed (if the system of reference is the Cartesian co-ordinate system, the basis is space-constant too, since the Cartesian co-ordinate grid is uniform in space);  

 denotes the velocity vector components in the vector basis 

. Note that in Eq. (51), in time differentiation, the basis acts as a time-independent quantity meaning that the velocity is calculated with respect to the fixed system.

By definition, the material particle acceleration vector can be computed as 



.




(52)

Compute the contravariant projections of the acceleration vector on the basis vectors of the convected co-ordinate system presented in Eq. (27). Thus, 

. As the particle travels, both 

 and 

 vary with time. If 

, Eq. (52) can be represented as


.


If the order of differentiation in the second item is changed and the definition of the velocity vector 

 is used, then the latter formula acquires the form



.                              (53)


As is known (see Eq. (40)), the covariant derivative of the contravariant components of the velocity vector is



.

It follows that Eq. (53) has the form



.

Thus, the contravariant components of the acceleration vector (the bracketed term in the latter expression) in the Lagrangian co-ordinates is



.                         (54)


Strain Rate. Consider an infinitesimal particle of the continuum at a fixed and arbitrary instant, Fig. 4. The infinitesimal particle is defined as the aggregate of continuum points with relative co-ordinates (relative to the particle centre M), 

, where 

 is an infinitesimal quantity. The velocity field is assumed to be continuous and differentiable. Let 

 be the velocity of the material point M. Consider velocity distribution in an infinitesimal particle. Since 

 is the velocity of a material point M( of this particle, then, having made the Taylor expansion of the particle velocity field near point M and neglecting higher-order infinitesimal quantities, we can write



,


(55)

where 

 are convected co-ordinates at the particle under study.


Rewrite Eq. (55) in the form









(56)

where 

 is the constant (Cartesian) basis of the system of reference. In Eq. (56) the distortion tensor with the components 

 is represented by the sum of its symmetric and oblique-symmetric parts. It can be shown that the oblique-symmetric tensor 

 remains oblique-symmetric in any basis, not only in the orthogonal one. The oblique-symmetric tensor characterizes the rigid rotation of a particle as a whole. A tensor with components determined by the formula







(57)

is referred to as the strain rate tensor. Its components can be written in an arbitrary co-ordinate system, including the convected one, with the use of the formulae of component transformation caused by basis transformation. The properties of the strain rate tensor and the existence of the directions of three principal strain rates along which the material particle undergoes pure tension or compression are evident.


The Law of Mass Conservation. Within Newtonian mechanics the mass of any material volume is constant, 

. The mass density is the quantity

                                                


 where  

 is the volume occupied by the mass 

. The law of mass conservation for a solid of volume V is expressed in the form



.

Bearing in mind that the limits of integration in the latter expression are represented in Lagrangian co-ordinates and that they are time-invariable, we can write the result as



.

The latter equality is valid for any material volume inside the body, therefore, resulting from the law of mass conservation, the differential equation of continuity 







(58)

is valid for the continuum.

Now, write the continuity equation in a different form, namely, in terms of Lagrangian variables. At the initial instant 

, at point M, an elementary parallelepiped can be constructed on the small vectors of the basis of the convected co-ordinate system 
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, the parallelepiped volume being



.

At an arbitrary instant t, the same material volume is


.

According to the law of mass conservation, 

, and hence,


.


(59)

The radius-vector 

 can be presented in the system of reference 

 (

= 1, 2, 3) with basis vectors 

 as



.

As is known, at the instant t, the basis vectors 

 at point M are determined by



,

whereas at the instant 

 they were



.

In view of the foregoing, the continuity equation (59) in Lagrangian co-ordinates has the form


,


(60)

where 

 and 

 (

 = 1, 2, 3) are determined by Eq. (48).

1.3. Continuum motion dynamics

According to Newton’s Second Law, the motion of a material particle of mass 

 obeys the differential equation of motion



,



or, since 

,



.
                  

(61)

Eq. (61) can be summed for all the particles constituting a solid of volume V and mass M. It should be taken into account that, according to Newton’s Third Law, particle contact interaction forces are equal in value and opposite in direction, so that they cancel out in summation. Besides, it follows from the law of mass conservation that



.

Then, for the body as a whole, side by side with Eq. (61), we have



,


(62)

where 

 and 

 denote the mass force density vector and the surface stress vector respectively.


Eq. (62) can be applied to the elementary infinitesimal material tetrahedron formed in the Lagrangian co-ordinate system by the co-ordinate planes and an oblique plane with external unit normal 

, Fig.5. We arrive at the will-known formula



,




(63)

where 

 are the cosines of the angle between the unit normal 

 and the directions 

, or its covariant components; 

 is the stress vector on an inclined plane; 

 is the stress vector on the tetrahedron co-ordinate plane. Decompose the vectors 

 in the directions of the basis, 

 of the convected co-ordinate system,



.                                    (64)

If the vector 

 is decomposed in the same way, the vectorial equation (63) for stresses on the inclined plane has the form



,

or, in terms of components,


.                                    (65)

The components of the vectors of stresses acting on the co-ordinate planes passing through a point in a solid 

 are referred to as the covariant components of the stress tensor at this point. 

Applying the Gauss-Ostrogradski formula to the last integral in Eq.(62), we have



.

Then Eq. (62) acquires the form



.

Since the expression is valid for any body part, it follows that



.


(66)

Eq. (66) is the differential equation of motion in the vectorial form. It can be represented at any body point by the decomposition of its vectors into the basis vectors 

 of the convected curvilinear co-ordinate system as


.

Since 

 (

 = 1, 2, 3) are linearly independent vectors, we obtain the differential equations of motion (in projections) in the convected curvilinear co-ordinate system



.



(67)


Now consider the material particle motion equations (61). By multiplying its right and left sides by the radius-vector 

, we arrive at the momentum equation for a material particle,


.

Add together similar equations for all the material particles constituting the body. When in the body being deformed there are no distributed moments inside or on the surface, the stress tensor is symmetric and its components are related via the condition



.

By co-ordinate transformation, the stress tensor can be represented by its components in the Cartesian co-ordinates, and the principal normal stresses and their directions can then be found for the tensor.


The problem of the mechanics of continua is involves the derivation of equations describing motion, particularly, of metal under plastic working. It reduces mechanical problems to mathematical ones in order to find mechanical variables involved in these equations.
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