4.4. Superdeep penetration of particles into a metal target

It used to be known that particles flying at high velocities penetrate into massive solids at rest to the depth equal only to several particle diameters. The 1980s saw sensational reports on an interesting phenomenon revealed experimentally and named “superdeep penetration”, see [70 – 86]. What was the essence of those experiments and what was observed?


In [70] the material of targets made of steel 45 and copper M2 worked by a high-velocity jet of a working substance was studied. Craters having a shape similar to that of craters appearing on the impact of iron on soda-lime glass [71] were observed. The depth of the craters tens of times exceeded the indenter diameter.


In [74] the results of the examination of targets made of armco iron and steel 40Kh13 worked by a high-velocity jet of titanium, chromium and silicon particles were given. The X-ray spectrum micro-analysis of armco-iron targets showed that the mass loss of the particle moving in the target was not monotonic, but periodic. 


The authors of [75] noted that, by the time of their experiments, a substantial amount of information on the existence of superdeep penetration had been obtained. They noted that penetration entailed impulse electro-magnetic radiation. 


Investigations into dynamic micro-alloying [76] showed that the cross section of ducts was by a factor of 10 smaller than the size of powder particles introduced into the material being dynamically worked. During the particle motion, the target material passing over the particle shut the duct behind the particle. The “perturbation” zone formed by the particle in the target material was several particle diameters long.


It was noted in [77] that the working of materials by a high-velocity jet of powder materials is accompanied by the impact-wave process. The particle penetrates into the target under these conditions. A change in the target material composition at the depth of 40mm was revealed by the layer-by-layer chemical analysis.


In [78] the mechanism of interaction between the jet of micro-particles and the target is discussed. It is noted that fairly much information on superdeep penetration is available, that the notion of this mechanism develops empirically and that there is a great diversity of opinions regarding this matter.


The Byelorussian Powder Metallurgy Research and Production Centre and the Institute of Mechanics attached to Moscow State University studied superdeep introduction of powder particles with sizes of tens of microns to the depth measured in millimetres [79]. Steel 45 was used as a target material, whereas tungsten, copper, lead and titanium were used as micro-projectile materials. The structure of the target micro-sections was examined by an MSM-2 scanning microscope and an MS-46 X-ray micro-analyser. Penetration was estimated by the penetration depth to particle diameter ratio. The ratios were as follows: 

 for tungsten; 

 for copper; 

 for lead; 

 for titanium. Investigations were conducted with the use of double powder mixtures. The authors managed to study the paths of micro-projectiles in the target.


The authors of [80] report that the penetration depth of a high-velocity indenter into massive metal bodies does not exceed 10 to 40 indenter cross dimensions. The depth exceeding these values is usually referred to as abnormal, and it is the subject matter of the experimental investigation. Powder particles were accelerated by an explosive accelerator (Fig. 30). Aluminium oxide powder was used. The target was made of steel 45. The micro-probe analysis of the target micro-sections showed that the penetration depth to particle size ratio exceeded 40 in all the experiments and that the crater (or the particle motion trace) was always shut by the target material. Superdeep penetration was always accompanied by hard radiation. 


A model of superdeep penetration is discussed in [81]. Generalizing the experience accumulated, the authors note the following. The throwing of the jet of particles (the flux density 

) at the velocity 
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 at a metal target is followed by a paradoxical effect of superdeep penetration of a great number of particles to depths of hundreds and thousands of sizes. This effect is characterized by the following. 1) Superdeep penetration occurs with particle diameters 

. Particle crystalline density is 

. 2) Superdeep penetration is accompanied by wave processes in the target, with the pressure amplitude of several gigapascals. Higher pressure in bombarded targets, with synchronous impulse loading on the lateral surfaces, causes a much greater number of penetrating particles at all the depths, this number amounting to 



 EMBED Equation.2  
 under standard conditions of throwing. 3) The ducts formed by moving micro-particles collapse, and regions of intensive plastic flow with highly defective, partially amorphous structure are formed near the ducts.


The mathematical model constructed in [81] is a problem on particle motion in Newtonian liquid. It seems to be rather schematic.


References [82] and [83] generalize research works done by S. K. Andilevko and his collaborators. Some of them have already been cited above, therefore we now present only what was not mentioned. Superdeep penetration is reported to be observed only when a metal target is loaded by a dense flux of micro-particles. The effect of superdeep penetration was not observed for single particles. Special attention was paid to the wave process generated in the target by a dense impulse flux of micro-particles acting for (2 – 7) 10

s. The works offer specific data on the wave process. The mathematical model is a problem on the motion of a hard particle through a viscous medium. Liquid (target metal heated up to melting temperature) flowing round a particle is said to form a cumulative jet behind the particle, which pushes the particle in the direction of its motion. The model seems to be too simplified and contradictory. For example, it does not show the role played by the wave process in the target. 


Note that the phenomenon of superdeep penetration has seen very few attempts of creating a fairly complete mechanical-mathematical and thermo-dynamical model ([84] and [85]). One of these models belongs to S. S. Grigoryan. In his opinion, superdeep penetration of a particle, together with the closing of the duct formed in the target, means that in this phenomenon there are no considerable plastic strains in the target material, no material fragmentation in the vicinity of the indenter, and that the particle itself suffers neither noticeable plastic strain nor fracture almost on the whole route of its motion. The target “opens” towards the moving particle owing to the emergence and propagation of one or several opening mode cracks in the target material; this leads to the formation of a duct-crack where the particle moves, which closes upon particle transit. The particle interacts with the duct-crack walls over a small contact area 

 (Fig.31), where normal and tangential stresses develop. The experimentally observed polygonal shape of the duct cross section confirms the appearance of these asymmetric starlike duct-cracks. Then the author estimated the magnitude of stresses on the contact area 

 and calculated the depth of penetration, which proved to be of the same order as that in the experiments.


Grigoryan’s model fails to answer the question why the targets made of ductile metals display that low plastic deformability. Grigoryan considers high strain rate to be the reason. S. K. Andilevko in [83] rejected that conception, and this seems to be justified. In our opinion, strain rate does not seem to be the governing factor to lower the plasticity of the target material. In fact, strain rate is highly important in all the instances of penetration; however, it is not in all the instances that superdeep penetration is observed. Grigoryan’s model lacks a link, and the discussion presented in the following sections seems to make up for this lack. 


Simultaneously with the above-mentioned model, G. G. Chorny proposed another model of superdeep penetration [85]. According to this model, the abnormally low resistance to the motion of a particle penetrating into the material in superdeep penetration is attributable to the fact that, for small particles (about 10

 to 10

cm) and high velocities (close to 1 or 2 km/s), high strain rates prevent the target material from exhibiting plasticity, and it behaves like elastic and brittle; opening mode cracks occur in front of the moving particle, which enlarges them and comes in contact with the target material; friction arising on the contact areas is limited by the shear strengths of the particle and target materials, and it can be significantly smaller when the material melts at the contact surface. 


Despite the pessimism felt in [86], we consider it feasible to create a fairly complete model of superdeep penetration based on the classical notions of mechanics and the materials of this book. A model of the kind is presented in the next sections.

4.5. A qualitative model of superdeep penetration of particles into a metal target

The mathematical models of superdeep penetration proposed by Grigoryan [84] and Chorny [85] and briefly discussed in the previous section seem to have come most closely to the exhaustive explanation of this phenomenon as for the time they were created. However, they failed to answer a number of questions and to explain some peculiarities of the process of superdeep penetration. Thus, according to these models, superdeep penetration takes place because the target material becomes brittle or low-plastic. The authors of the above-mentioned models consider the high rate of target deformation by a particle to be the reason for metal embrittlement. Indeed, higher rate of deformation is known to cause lower metal plasticity. However, this fails to explain the phenomenon of superdeep particle penetration, since the high rate of deformation takes place in all the instances of high-rate impact and penetration, be it superdeep penetration or conventional penetration to the depth of several particle sizes. Let us now discuss the question why the target material becomes brittle.


Recall that the superdeep penetration of particles into a massive body occurs only when there is a wave process in the body. As mentioned above, hydrostatic pressure 

 may range within several gigapascals in the wave process (see, e.g., [81]). The wave process is characterized by the fact that a compression wave is followed by a tension wave of the same intensity (with positive mean normal stress 

). In experiments that showed the effect of superdeep penetration, the shear strength of the target metal 

 runs into megapascals. Consequently, the variations in the stress index 

 caused by the wave process in the target may range within about an order of magnitude. This is what causes the embrittlement of the target material implied in [84, 85].


Indeed, turn to some plasticity diagrams, see Figs. 7 and 9. The variation of 

 within an order of magnitude corresponds to the multiple variation of plasticity 

, maybe even by a factor of 10. Note that 

 is always positive by definition. The reader can easily extrapolate the plasticity diagrams to the region where 

 (Our experiments have never failed to show that the plasticity diagrams are monotonic, with their convexities directed downwards.) When doing so, one can see that metal plasticity drops significantly in the tension wave (

) as compared with that in the compression wave, where 

. Now we can propose two qualitative models of particle penetration, conventional and superdeep, into a metal target. Let us begin with conventional penetration.


A high-velocity particle impinges on a massive metal target at rest. When the particle moves inside the target, the deceleration force is predetermined by the resistance of the target to penetration. The stress state of the target metal in the neighbourhood of the particle is characterized by the prevalence of compressive stresses. This favours deformation without fracture for most of plastic metals. The kinetic energy of the particle turns into the work of the plastic deformation of the target metal in the neighbourhood of the particle motion path (shaded in the left part of Fig. 32). The work of plastic deformation is proportional to the quantity 

 where 

 is the strain hardening curve (strength as dependent on the amount of strain accumulated), and its integral is plastic deformation work density equalling the value of the area under the hardening curve, see the left part of Fig. 32. 


Let us now consider unconventional penetration, namely, the instance of favourable conditions for target material fracture induced in the target, for example, by the wave process, see Fig. 32 b). Assume now that the stress state in the neighbourhood of the particle is such that tensile stresses prevail. The particle as if “rides” the tension wave moving in the same direction as the particle and stays in this wave for a long time. The target material cannot retain the same amount of strain 

 as in conventional penetration. It fractures sooner, and it does not resist to forming after fragmentation, since 

 when 

 and 

, see Fig. 32 b.


Let us now compare 

 and 

 – the lengths of penetration according to the two qualitative models. All other factors being the same (the same kinetic energy of the flying particle, the same targets etc.), the 

 to 

  ratio is equal to the ratio between the shaded areas under the hardening curves, i.e., 

  to 

 (see Fig. 32), or simply 

 to 

.


Having answered the question why target material embrittlement and superdeep penetration take place, we turn to other experimentally established facts accompanying this phenomenon. Thus, superdeep penetration was observed when a target was struck by a great numbers of particles actuated, e.g., by an explosive accelerator (Fig. 30). A radical assumption was even made, saying that a separate particle flying alone cannot penetrate into a massive target to a very great depth. 


Firstly, note that particles are accelerated due to being flown around by explosion products. The impulse of force accelerating the particles is proportional to the particle size squared. The particles, of course, have different sizes, therefore the particles have different velocities when they encounter the target, each particle having its own instant of encounter. Secondly, the explosive accelerator resolves another problem – it generates a wave process in the target. First there appears a surface layer compression wave, it gives way to a tension wave, etc. The waves move inside the bulk of the target at a certain velocity.


The following mechanism of superdeep penetration of particles can be proposed. By the formation of the tension wave in the near-surface layer, the target surface has been reached by a number of particles moving at a velocity close to the velocity of the wave. Penetrating into the target, the particles do not meet with any strong resistance inherent to conventional penetration, since the plasticity of the target metal (the ability to deform without fracture) is essentially lower in the tension wave. These particles as if “ride” the tension wave for a while, they move faster than usually inside the target and, naturally, penetrate to greater depths.


This mechanism of superdeep penetration explains why this phenomenon is observed only for fine particles. Indeed, the particle size must be smaller than the tension wave length in the target. The smaller the particle size – the longer the period of favourable conditions for the particle to penetrate deeper into the target. If the particle size is equal to the sum of the lengths of the tension and compression waves, then the particle penetrates only to the depth about twice exceeding that under conventional conditions. 


Upon getting into a tension wave, the particles cannot stay there all the time. Metal plasticity in a tension wave is much lower than under conventional conditions or in a compression wave; however, it is finite thus creating some resistance to the motion of the particles. When moving, they lag behind the tension wave. The latter is followed by a compression wave. Plasticity may be so high in the compression wave that the target material shows no fracture and the moving particle meets with the same resistance as under conventional conditions of penetration. However, the compression wave, again, gives way to a tension wave, and the particle meets with less strong resistance etc. The particle eventually stops and its trace in the target contains microparticles – the remains of intensive rubbing of the particle surface at the instants when the particle is reached by the compression wave. This has been confirmed by experiments. The particle moving inside the target loses its mass periodically, not monotonically.


All the phenomena accompanying superdeep penetration that have been observed in experiments seem to be explainable in terms of the qualitative model discussed.


Let us now turn to a mathematical model of superdeep penetration.

4.6. Plastic half-space at rest penetrated by a particle under plane strain

Assume that at the instant of encounter with a half-space, 
[image: image2.wmf]0

t

, a rigid particle of a known mass has a velocity 
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 directed normally to the half-space boundary. The mechanical properties of the half-space material are considered to be known. Before the particle encounters the half-space, the latter may be both undeformed and having certain disturbances, which may cause a change in material plasticity in the particle motion path. The depth of penetration resulting from the impact is to be found in view of the possible fracture of the target material.

We solve the problem with the application of the method proposed in section 3.6 for the instance of particle penetration into a half-space under conditions of plane strain. The particle is considered to have a rectangular cross section with a height 
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 and a width 
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. The particle orthogonally impinges with its face on the half-space. The target material flow is assumed to be plane in penetration. The target is made of a perfectly plastic material. 
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Assume that the particle (its front boundary) has penetrated for a depth 
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 at an arbitrary time 
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 and has a velocity 
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 (Fig. 33). Early in the penetration, when 
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. Under the condition of the problem, then particle remains undeformed, its motion as a whole obeys Newton second law. The half-plane 
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, with the exception of the rectangle ABCD occupied by the particle, is the body whose stress-strain state and fracture needs to be described, see Fig. 34. We formulate boundary conditions on the sides of the rectangle and on the boundary 
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 adding up to the surface bounding the volume of the body region being deformed. Suppose that the side AB is free of external loads on the target and that it is an 
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-type surface. Assume that on the sides AD and BC there is particle and target material slippage. On these 
[image: image14.wmf]s

S

-type surfaces there is friction. For simplicity, we take the Prandtl-Siebel friction law. The boundary CD is considered to be an 
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-type surface. On it, the target metal sticks to the particle surface. The surface CD takes the load 
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. Figure 34 shows the force 
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 acting from the particle upon the target. The following designations are used on the surface 
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: 
[image: image19.wmf]n

 – the direction of the normal external to the target; 
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 – tangential direction; 
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 and 
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 form the local right-hand co-ordinate system.

The boundary conditions can analytically be written as
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The upper bound method [8, 25, 26] is taken as a variational basis for the solution technique. In the instance under study, in view of the boundary conditions (206), the variational equation of the principle of virtual velocities and stresses becomes, see [25],
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Note that in the latter equation the functional in curly brackets is expressed in terms of the unknown field of velocities of the target material particles 
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 and the unknown force 
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. If we restrict ourselves to the variation of the velocity field alone, as is customary in the upper bound method, the variational equation (207), on condition that 
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(208)

Equation (208) represents the variational principle of virtual velocities. This equation would suffice to find the velocity field at a fixed instant and, on the whole, the strain state of the half-space on particle penetration. The functional of the principle of virtual velocities and stresses (the term in curly brackets in Eq. (207)) is absolutely minimal, and it becomes zero on the problem solution. This results in the inequality
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The value of the term in curly brackets calculated on the virtual kinematically admissible velocity field offers an upper estimate of the force of the particle acting on the target during penetration. We solve the problem on particle penetration into perfectly plastic half-space at rest basing ourselves on the upper bound method represented by Eqs (208) and (209). 

Taking into account the boundary conditions, we select a virtual field of target material flow velocity. Since the material is perfectly plastic, it is acceptable to use discontinuous functions when constructing the virtual velocity field [1, 9, 24 – 26]. Assume that the discontinuities of the tangential velocity component are admissible on some surfaces, the normal velocity components being continuous on any surface in volume 
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 due to the incompressibility of the target material.

The construction of the virtual field of the velocities of the target material particles at time 
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 is schematically shown in Fig. 34. The flow covers the symmetric region A’B’C’D’ surrounding the particle ABCD and divided symmetrically into zones 1, 2, 3, 4 and 5. The rest of the half-space, where there is no deformation, is designated as zone 0. The flow region is assumed to be symmetric about the 
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-axis. The size of the rectangle A’B’C’D’ depends on the magnitude of angle 
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 selected as the only parameter to be varied. The arrowed line shows one of the flow lines. It is assumed that the velocity field is uniform in each zone and that the material remains undeformed inside the zones. The entire strain concentrates on the zone boundaries, where there is a discontinuity in the tangential velocity component. The velocity component normal to the boundary is continuous. In what follows, in view of symmetry, only zones 2, 3 and 4 lying in the region 
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 will be discussed, whereas zones 1 and 5 will be represented by their halves found in the same region.

As an example, we examine zones 1 and 2 and the boundary between them 1+2, see Fig. 35. Satisfying the boundary condition on CD (Fig. 34), we assume that 
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 in zone 1. The velocity component normal to the boundary 1+2 has the value 
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 here. Then, it follows from the condition of the continuity of the normal component on the boundary 1+2 that 
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. If similar reasoning is applied to all the five zones and boundaries between them, the virtual velocity field satisfying all the velocity boundary conditions and the incompressibility condition will be constructed. The results of constructing a velocity field of the kind are given in Table 3.1.

Table 1.

The virtual velocity field in different flow zones

	
	
	z o n e s
	
	

	1
	2
	3
	4
	5
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To formulate the variational equation for the discontinuous virtual fields, the normal velocity components and the jumps of the tangential velocity components on the zone boundaries need to be determined. Again, as an example, we study the boundary 1+2 (Fig. 35). At this boundary, the normal and tangential components of the velocity vector of the particles belonging to zone 1 have the following values: 
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. At the same boundary, the components of the velocity vector of the particles belonging to zone 2 are 
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Here, 
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 is the mean value on the velocity jump line, 
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. Note that the values of the velocity vector components refer to the material particles of the target material, and that they are written in terms of the fixed co-ordinates 
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. Extending similar reasoning to the other zone boundaries, we obtain the values of the vector components for them, which are given in Table 3.2, where zone 0 denotes the undeformed region of the target. The normal to the boundary is selected to be directed the same way as the material flow.

For the above-described kind of discontinuous velocity fields, the variational equation of the principle of virtual velocities (208) is 
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Table 3.2.

The values of velocity vector components at the boundaries of the flow zones

	Boundary
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where 
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The zone areas have the following values:
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In view of Eqs (212) to (224), the variational equation (211) acquires the form
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Substituting the zone acceleration values  
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into Eq. (225), we arrive at the differential equation for the determination of the parameter 
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The point here denotes the total time derivative.

We now deduce the equation of particle motion in the target. We note all the forces affecting the particle. Under the conditions of the problem, the force 
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 operates on side CD. It follows from the boundary conditions that the surface AB is free from forces, whereas on the surfaces AD and BC friction forces operate. Thus, the equation of particle motion has the form
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The force 
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 (its upper estimate) is evaluated as
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Thus, we arrive at a set of three equations (227) – (229) to determine the functions 
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. Thus, the problem is solved stepwise up to the instant the particle stops.
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Let us now specify the initial conditions 
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Using the above relationships, one can write the necessary condition of the extremum of the functional of the principle of virtual velocities similar to Eq. (225) for the instant 
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where 
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we can write the particle motion equation for this time. Here, 
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Starting from time 
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 (Fig. 36) and up to complete penetration into the target (Fig. 34) the particle experiences a number of intermediate stages schematized in Fig. 37. 

Starting from time 
[image: image158.wmf]0

t

, the flow develops according to the kinematically admissible flow pattern accepted previously, Fig. 37 a. For this pattern,
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At an arbitrary instance, the variational equation (211) assumes the form
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where
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Substituting the values of 
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 from Eq. (226) into Eq. (232), we arrive at a differential equation similar to Eq. (227),
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From this equation, the particle motion equation and the upper estimate of the force
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the values of 
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where 
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Substituting the values of acceleration from Eq. (226) into Eq. (238), we obtain the differential equation
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The upper estimate of the force 
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At an instant 
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Fig. 37. Flow patterns at different instants of penetration: a – 
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The instant 
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 marks the beginning of the last stage of penetration corresponding to the flow pattern shown in Fig. 34 ( equations for this stage have already been obtained). The motion follows this pattern until the particle comes to rest.
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 is the distance between the target boundary and the front face of the particle when the latter comes to rest. The analysis of the calculation results has demonstrated that the relative depth of particle penetration depends on the ratio 
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, not on specific particle dimensions. This conclusion corresponds to the physical meaning and statement of the problem. Thus, the results shown in Fig. 38 hold for particles with other dimensions too, when 
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In the solution obtained there is no presumption of possible target material fracture. Let us now allow for this possibility as follows. We assume that, if at some time step, when the boundary 2+0 is crossed, the material has accumulated the amount of strain exceeding the specified value of plasticity 
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, to the front boundary of the zone. The increment of the amount of strain is computed as
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where 
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 is the velocity of crossing the discontinuity boundary by the target material particles.

Let 
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The velocity of crossing the boundary 2+0 has the value
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For the above-assumed problem parameters, with the value of plasticity 
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, particle penetration is not accompanied by target material fracture.

Suppose now that, according to the qualitative model of penetration proposed in section 4.4, the particle gets into a tension wave while travelling. Assume that plasticity decreases considerably as this takes place. In this case, the material fails on the way of particle penetration, and the depth of penetration considerably exceeds the depth of penetration without fracture. The relative depth of penetration as dependent on the initial particle velocity when 
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 is shown in Fig. 39. Calculations have shown that, at velocities close to 
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, there is no tangible increase in the depth of penetration caused by target material fracture, and that depth of penetration shows a greater increase as the velocity grows. Thus, lower plasticity of the target material on the way of particle motion leads to a noticeable increase in the depth of penetration.










� EMBED Word.Picture.8  ���Fig. 33. Plastic half-space penetrated by a particle:


1 – particle, 2 – target, 3 – target boundary











� EMBED Word.Picture.8  ���Fig. 34. The flow pattern for the model of plastic half-space penetrated by a particle
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Fig. 35. A scheme for the determination of velocity vector components at the boundary 1+2





� EMBED Word.Picture.8  ���


Fig. 36. The flow pattern at the instant of particle–target contact.
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Fig. 38. Relative penetration depth as dependent on the initial particle velocity � EMBED Equation.2  ���:


� EMBED Equation.3  ��� (1), � EMBED Equation.3  ��� (2)
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Fig. 39. Relative depth of penetration in the instance of fracture: � EMBED Equation.3  ��� (1), � EMBED Equation.3  ��� (2).








� The solution was made in co-operation with L.F. Spevak
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