Bobrovskiy V.S. Kazakov A.L. Rojas E.M. Sinitsyn A.V. Spevak L.F. Steady-states solutions of the Vlasov–Maxwell–Fokker–Planck system of proton channeling in crystals // Communications in Nonlinear Science and Numerical Simulation. 2023. Vol. 118. 107005. [10.1016/j.cnsns.2022.107005].
Kazakov A.L. Spevak L.F. On a solution to a nonlinear heat transfer model by the BEM // AIP Conference Proceedings. 2023. Vol. 2624. 030027 p. [10.1063/5.0132777].
Kazakov A.L. Spevak L.F. Constructing Exact and Approximate DiffusionWave Solutions for a Quasilinear Parabolic Equation with Power Nonlinearities // Mathematics. 2022. Vol. 10. P. 1559. [10.3390/math10091559].
Kazakov A.L. Spevak L.F. Chuev N.P. An analytical and numerical study of free boundary dynamics for an isolated mass of a self-gravitating gas // Diagnostics, Resource and Mechanics of Materials and Structures. 2022. Iss. 4. P. 61–80. [10.17804/2410-9908.2022.4.061-080].
Kazakov A.L. Lempert A.A. Spevak L.F. On an exact solution to the nonlinear heat equation with a source // Journal of Physics: Conference Series. 2021. Vol. 1847. 012006. doi:10.1088/1742-6596/1847/1/012006.
Lebedev P.D. Kazakov A.L. Iterative algorithms for constructing the thinnest coverings of polyhedra by sets of different balls // Trudy Instituta Matematiki i Mekhaniki URO RAN. 2021. Vol. 27. No. 1. P. 116–129. DOI: 10.21538/0134-4889-2021-27-1-116-129.
Kazakov A.L. Spevak L.F. Exact and approximate solutions of a problem with a singularity for a convection–diffusion equation // Journal of Applied Mechanics and Technical Physics. 2021. Vol. 62. No. 1. P. 18-26. DOI: 10.1134/S002189442101003X.
Kazakov A.L. Spevak L.F. Exact and Approximate Solutions to the Degenerated Reaction-Diffusion System // Journal of Applied Mechanics and Technical Physics. 2021. Vol. 62. No. 4. P. 673-683. DOI: 10.1134/S0021894421040179.
Kazakov A.L. Kuznetsov P.A. Spevak L.F. Construction of solutions to the boundary value problem with singularityfor a nonlinear parabolic system // Siberian Journal of Industrial Mathematics. 2021. Vol. 24. No. 4. P. 64-78. DOI: 10.33048/SIBJIM.2021.24.405. VAC list
Kazakov A.L. Spevak L.F. On the Construction of a Heat Wave Generated by a Boundary Condition on a Moving Border [Electronic resource] // Diagnostics, Resource and Mechanics of materials and structures. 2021. Iss. 6. P. 54-67. DOI: 10.17804/2410-9908.2021.6.054-067.
Kazakov A.L. Spevak L.F. Nefedova O.A. A Numerical Solution to the Two-Dimensional Nonlinear Degenerate Heat Conduction Equation with a Source // AIP Conference Proceedings. 2020. Vol. 2315. 040018. https://doi.org/10.1063/5.0036718.
Kazakov A.L. Spevak L.F. Approximate and Exact Solutions to the Singular Nonlinear Heat Equation with a Common Type of Nonlinearity // Bulletin of Irkutsk State University, Series Mathematics. 2020. Vol. 34. No. 4. P. 18-34. https://doi.org/10.26516/1997-7670.2020.34.18.
Kazakov A.L. Spevak L.F. M.-G. Lee On the Construction of Solutions to a Problem with a Free Boundary for the Nonlinear Heat Equation // Journal of Siberian Federal University - Mathematics & Physics. 2020. Vol. 13. No. 6. P. 694–707. DOI: 10.17516/1997-1397-2020-13-6-694-707.
Kazakov A.L. Spevak L.F. Nefedova O.A. Lempert Anna On the Analytical and Numerical Study of a Two-Dimensional Nonlinear Heat Equation with a Source Term // Symmetry-Basel. 2020. Vol. 12. Iss. 6. article 921. https://doi.org/10.3390/sym12060921.
Kazakov A.L. Spevak L.F. Spevak E.L. On Numerical Methods for Constructing Benchmark Solutions to a Nonlinear Heat Equation with a Singularity [Electronic resource] // Diagnostics, Resource and Mechanics of materials and structures. 2020. Iss. 5. P. 26-44. DOI: 10.17804/2410-9908.2020.5.026-044.
Kazakov A.L. Nefedova O.A. Spevak L.F. Solution of the Problem of Initiating the Heat Wave for a Nonlinear Heat Conduction Equation Using the Boundary Element Method // Computational Mathematics and Mathematical Physics. 2019. Vol. 59. No. 6. P. 1015-1029. DOI: 10.1134/S0965542519060083.
Kazakov A.L. Spevak L.F. Numerical Study of Travelling Wave Type Solutions for the Nonlinear Heat Equation // AIP Conference Proceedings. 2019. Vol. 2176. 030006. – https://doi.org/10.1063/1.5135130.
Kazakov A.L. Kuznetsov P.A. Lempert A.A. Spevak L.F. Analytical and numerical solutions to the problem on a heat wave initiating for the nonlinear heat equation with a source // IOP Conf. Series: Journal of Physics: Conf. Series. 2019. Vol. 1268. 012030. – DOI:10.1088/1742-6596/1268/1/012030.
Kazakov A.L. Spevak L.F. Lempert A.A. Nefedova O.A. A computational algorithm for constructing a two-dimensional heat wave generated by a non-stationary boundary condition // IOP Conference Series: Journal of Physics: Conference Series. 2019. Vol. 1392. 012083. – DOI:10.1088/1742-6596/1392/1/012083.
Kazakov A.L. Spevak L.F. Nefedova O.A. Solving a two-dimensional problem of heat wave initiation by a boundary condition specified on a movable manifold // Journal of Physics: Conf. Series. 2019. Vol. 1268. 012031. – DOI: 10.1088/1742-6596/1268/1/012031.
Kazakov A.L. Kuznetsov P.A. Spevak L.F. A Heat Wave Problem for a Degenerate Nonlinear Parabolic Equation with a Specified Source Function // AIP Conference Proceedings. 2018. Vol. 2053. – 030024. – https://doi.org/10.1063/1.5084385.
Kazakov A.L. Spevak L.F. Nefedova O.A. On the Numerical-Analytical Approaches to Solving a Nonlinear Heat Conduction Equation with a Singularity [Electronic resource] // Diagnostics, Resource and Mechanics of materials and structures. 2018. Iss. 6. P. 100-116. DOI: 10.17804/2410-9908.2018.6.100-116.
Kazakov A.L. Kuznetsov P.A. Spevak L.F. On a Three-Dimensional Heat Wave Generated by Boundary Condition Specified on a Time-Dependent Manifold // Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika. 2018. Vol. 26. P. 16-33.
Kazakov A.L. A.A. Lempert P.A. Kuznetsov On the Analytic Solvability of a Special Boundary Value Problem for the Nonlinear Heat Equation // AIP Conf. Proc. 2017. Vol. 1915. – 020003. Full text>>
Spevak L.F. Kazakov A.L. Solving a Degenerate Nonlinear Parabolic Equation with a Specified Source Function by the Boundary Element Method // AIP Conf. Proc. 2017. Vol. 1915. – 040054. Full text>>
Kazakov A.L. Spevak L.F. Nefedova O.A. Simultenious Application of the Boundary Element Method and the Power Series Method for Solving a Two-Dimensional Problem of Heat Wave Motion [Electronic resource] . – DOI: 10.17804/2410-9908.2017.6.006-015 // Diagnostics, Resource and Mechanics of materials and structures. 2017. Iss. 6. P. 6-15.
Kazakov A.L. Spevak L.F. An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry // Applied Mathematical Modelling. 2016. Vol. 40. Issue 2. P. 1333-1343.
Bychkov I.V. Kazakov A.L. Lempert A.A. Bukharov D.S. Stolbov A.B. An Intelligent Manage-ment System for the Development of a Regional Transport Logistics Infrastructure // Automation and Remote Control. 2016. Vol. 77. – No. 2. P. 332-343.
Bychkov I.V. Kazakov A.L. Lempert A.A. Bukharov D.S. Stolbov A.B. An Intelligent Management System for the Development of a Regional Transport Logistics Infrastructure // Automation and Remote Control. 2015. Vol. 72. No. 8.
Kazakov A.L. Lempert A.A. Bukharov D.S. Mathematical Model and Program System for Solving a Problem of Logistic Objects Placement // Automation and Remote Control. 2015. Vol. 72. No. 8.
Kazakov A.L. Lempert A.A. On Mathematical Models for Optimization Problem of Logistics Infrastructure // International Journal of Artificial Intelligence. 2015. No. 13 (1). P. 200-210.
Kazakov A.L. Spevak L.F. Numerical and analytical studies of a nonlinear parabolic equation with boundary conditions of a special form // Applied Mathematical Modelling. 2013. Vol. 37. – Issues 10-11. P. 6918-6928.
Kazakov A.L. Lempert A.A. Bukharov D.S. On Segmenting Logistical Zones for Servicing Continuously Developed Consumers // Automation and Remote Control. 2013. Vol. 74.– №6. P. 968-977.
Kazakov A.L. Lempert A.A. Existence and uniqueness of the solution of the boundary-value problem for a parabolic equation of unsteady filtration // Journal of Applied Mechanics and Technical Physics. 2013. Vol. 54. – № 2. P. 251-258.